
Traffic Engineering to Minimize The Number of
Rules in SDN Datacenters

Rajorshi Biswas and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA
{rajorshi, jiewu}@temple.edu

Abstract—Traffic engineering is one of the important parts in
a datacenter. Software defined networking (SDN) opens oppor-
tunities for easier traffic engineering. Functionalities of an SDN
switch are determined by the forwarding rules installed on it.
Because of the limited space on SDN switches, it is important to
keep the number of rules as small as possible. If the number of
rules in a switch is higher than a threshold, then the forwarding
delay jumps up. A virtual tunnel based approach helps to reduce
the number of rules in an SDN switch while preventing link
flooding attack vulnerability. A virtual tunnel is basically a
conceptual structure in the controller of an SDN network where
a group of flows follow a common path. A wise formulation of
tunnels can reduce the number of rules needed dramatically by
forwarding multiple flows through the same tunnels with the
tunnel’s common rules. In this paper, we address this important
issue and propose a mechanism to keep the number of rules
minimum. We formulate two problems and propose clustering-
based and greedy solutions with an approximation ratio. Our
first problem is to build some tunnels using the minimum
number of edges and rules. Our second problem considers some
predetermined tunnels and finds an ID assignment to the flows so
that the number of rules needed to forward them is minimum. We
conduct extensive simulations and experiments on our datacenter
to validate our proposed model.

Index Terms—Traffic engineering, link flooding attack, software
defined networking, minimize rules

I. INTRODUCTION

Nowadays, software defined networking (SDN) switches are
being used instead of regular routers in datacenters. In the
SDN architecture, a centralised software, called a controller,
controls all of the routing of flows. The controller can get the
global view of the topology including link status, flow rates
and other properties. This centralised architecture has made
flow management easy. In addition to the limited capacity
of links, routers, or switches, there is another limitation on
number of rules in SDN switches.

To observe the importance of the number of rules, we
conduct an experiment on a Pica8 P-3297 [1] SDN switch.
We insert different numbers of rules in the SDN switch and
observe the packet transmission delay between two machines.
The machines are directly connected to the SDN switch
which means they are two hops away from each other. If the
number of rules is greater than 4, 000, then the delay increases
suddenly by 1 ms. After that, transmission delay increases with
the number of rules. This experiment motivates us to conduct
research on minimizing the number of rules.

This research was supported in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1629746, CNS 1651947, and CNS 1564128.

(a) Tunnel creation.

s2

s1 t1

t2

s3

(b) Flow redirection.

Fig. 1: An introductory example.
One way to minimize the number of rules is to group the

flows and use a common rule to forward them. It is always
beneficiary to aggregate flows that travels a long common path
which can be achieved by creating some virtual tunnels. The
virtual tunnels are not similar to TLS or VPN. These tunnels
are only conceptual in the SDN controller. Packets of a flow
are tagged with a tunnel ID if they travel through a tunnel. The
most challenging parts are creating the tunnels and assigning
IDs to the channels so that the number of rules is minimal.
Creating tunnels needs to maintain the capacity constraints
of the links. Vulnerability to link flooding attack is another
important issue to take in to account while creating tunnels.
If a link is highly utilised, then it may be a lucrative spot to
attackers and they can be overwhelmed by very small amount
of attack traffic.

For example, in Fig 1(b), there are three flows f1 = s1 →
t2, f2 = s2 → t2, and f3 = s3 → t1. First, we want to forward
the flows through the shortest path or with the minimum
number of rules. f1 is forwarded through path {A,E,H}
and three rules are needed. f2 is forwarded through path
{B,D,H} and three rules are needed. Similarly, for f3 we
need three more rules. Therefore, in total we need nine number
of rules. Second, we want to use the tunneling approach. Let,
we create a tunnel {A,B,D,H,E}. In this situation, we need
four rules to create the tunnel (forwarding rules at node A,B,
D, and H). We need additional three rules to take exit from
the tunnel (deliver packets to t2 and t1). Therefore, we need
seven rules only if we use this tunnel. The problem with this
tunnel is highly utilized link (D,H) which is vulnerable to
link flooding attack. To avoid any link to be vulnerable to
attack we create a tunnel {B,D,H,E} and forward f2 and
f3 through the tunnel. We need three rules for the tunnel and
two to take exit from the tunnel. In addition to this, we need
three rules to forward f1 through {A,E,H}. Therefore, in
total we need eight number of rules, which higher than with
vulnerability but lower than shortest path routing. In reality,

the number of rules in a switch is much higher and we can
save a large number of rules using the tunneling approach.

In this paper, we utilize the possibility of tunnel creation
to minimize the number of rules. We formulate a problem to
find the tunnels and we propose a clustering based solution.
Additionally, we formulate another problem to assign ID of
the tunnels so that the number of rules needed to forward the
packets is minimum. We provide an optimal solution for a
simple tunnel structure. We provide a greedy set cover based
decomposition of complex structure and apply the solution to
the simple structure. We also provide the approximation ratio
of our proposed solution. Therefore, our main contributions
are the following:

1) We formulate a problem to create tunnels that minimize
the number of rules. We provide a clustering based
solution to this problem.

2) We study another problem to assign tunnel IDs in such
a way that minimizes the number of rules. We provide
a set cover based solution to the problem and provide
approximation ratio of our solution.

3) We conduct extensive simulations and the experimental
results support our model.

The remainder of this paper is arranged as follows. Section
II presents some related work and their limitations. In Section
III, we present the system model. In Section IV, we present
the problem of tunnel creation and a clustering based solution.
Section V contains the problem of assigning IDs to the
tunnels and solutions. Section VI and Section VII present the
simulation and experimental and results. Finally, Section VIII
concludes our paper.

II. RELATED WORK

Unlike networks with regular topology [2] or networks with
fault-tolerant topology [3] where re-rerouting under attacks
and failures can be done using inherit topology redundancy
and structure, in networks with irregular topology, there are
three types of works defending LFA and link congestion.
Firstly, there statistical methods, including correlation, entropy,
covariance, divergence, cross-correlation, and information gain
are used to detect attack traffic [4]. Other types of congestion
mitigation system includes multi-path routing [5–8]. These
schemes either do not consider SDN switches or the number
of rules or SDN switch capabilities.

Secondly, there exists some linear programming based so-
lutions in SDN environments. In [9], the authors considers
multiple failures of links and multi-flows rerouting. They
propose a model for reducing communication overhead be-
tween controller and switch during flow rerouting to minimize
flow rules. They formulate the problem as a 0 − 1 nonlinear
programming model and solve using Lagrange relaxation. An
approach to ensure traffic reachability for a single link failuire
is proposed in [10]. They redirect traffic on the failed link
to SDN switches via some pre-configured IP tunnels. They
can configure multiple backup paths using SDN switches
which allows the system to mitigate congestion very fast.

In [11], authors minimize flow rules for rerouting multi-
flows when there are multiple link failures in the network.
They propose a model to metric the communication overhead
between controller and switch during flow rerouting and we
formulate a 0-1 nonlinear programming model. Their model
can avoid link congestion in the network and can provide the
minimum flow rules. In [12], authors consider minimizing
the number of forwarding rules installed on SDN switches.
They introduce an heuristic algorithm that minimizes rules that
are only used by network statistics analyzer applications. In
[13], authors formulate a problem to minimize the number
of rules in multicast routing model for multiple multicast
requests as an integer linear programming (ILP) problem and
solve using traditional solvers. In [14], authors also propose
an ILP to minimize the overall delay due to flow table space
and transmission overhead. A flow forwarding scheme called
PASR is prposed in [15]. The PASR can learn the flow path in-
formation and implement flow aggregation. They also present
an intelligent encoding algorithm to minimize the number
of rules. In [16], authors propose a destination-based routing
solution using reinforcement learning and linear programming
to reduce the number of rules. It forwards majority of the
traffic on equal-cost multi-path and redistributes some traffic
using reinforcement learning algorithm.

Finally, in [17], authors propose a hybrid and scalable SDN
datacenter using both wireless and wired connections. They
formulate a routing minimization problem to minimize the
total number of installed rules in the switches. They propose
an heuristic algorithm to find a routing with rule aggregation.
In [18], minimize flow rules for rerouting multi-flows when
network occurs multiple link failures. They propose a model to
measure the communication overhead between controller and
switch during flow rerouting. They formulate the problem as a
0-1 linear programming and solve the model using decomposi-
tion based on Lagrange relaxation. Some other works such as
[19], considers the problem of minimizing the number of rules
in SDN switches by analyzing network statistics. They propose
an heuristic algorithm that creates a reduced representation of
rules in the SDN switches in network. They do not consider
link congestion or an attack scenario. Therefore, a new method
that considers the link congestion, aggregation of flows, and
using minimum number of rules is necessary.

III. SYSTEM MODEL

A. Network Model

Our network is composed of gateway nodes, SDN switches,
sources, destinations, and flows. We assume that the controller
knows the links, their usage, and SDN switches. Therefore,
the controller has the global view of the topology. A rule in
an SDN switch is a packet forwarding policy. The properties
in the header of an incoming packet are matched with some
criteria (e.g. source address, destination address, incoming
port, protocol) of the rules. If a packet is matched with criteria
of any of the rules, then actions are taken according to that
rule. For simplicity, we consider the destination address as the
only matching criteria of the rules of the regular flow.

We introduce another criteria for matching called tunnel ID.
The rules that have tunnel ID in their matching criteria are
called tunnel rules. A tunnel ID is assigned to a packet of
incoming flows by the gateway nodes. Assigning the tunnel
ID means attaching a specific field in the header of the
incoming packet. Once a tunnel ID is attached to a packet, it
is forwarded towards the tunnel first. After it reaches tunnel,
it is forwarded through the tunnel specified by the ID towards
the destination using the tunnel rules. Once the packet is at
the closest node from the destination, it exits the tunnel. We
call the rule responsible for exiting a tunnel an exit rule. Once
the packet exits the tunnel, it is forwarded to the destination
using regular rules. A tunnel in a datacenter is a virtual concept
only maintain by the SDN controller. The controller creates
the virtual tunnels in such a way that it takes a small number
of rules to forward all the flows. The creation of tunnels is a
dynamic process; when the topology changes, the controller
may change the structure of the existing tunnels. If a link on
some tunnels goes down, the controller can recalculate the
tunnels or discard the tunnels. The controller can add, modify,
or delete rules from an SDN switch. After creating the tunnels
it installs the corresponding tunnel rules to forward the packets
having the tunnel ID attached.

There is limited space to store rules from where the switch
can lookup them fast. If this limit is exhausted by some rules,
then additional rules are stored in slow memory; therefore
the number of rules in an SDN switch is very important.
The disadvantage of fast memory is it takes a high amount
of power and the power is proportional to the number of
stored rules. The advantage of using slow memory for storing
rules is that they consume less energy. Therefore, when the
fast memory is full, the rule matching takes a long time and
packet forwarding delays. A common issue in a datacenter
is the network congestion due to regular traffic and attack
traffic. Detecting the attack traffic by analysing the packets is
a slow process. Sometimes it needs deep packet inspection and
large number of data processing. The detection and blockage
of attack traffic is out of the scope of this paper and we focus
on forwarding some traffic in a way that use a few number of
rules considering the network congestion issues.

An attacker can congest links by analyzing the topology and
the routing of the network. It selects one or multiple links as a
target links and flood them by sending attack packets. Target
links are selected based on the number of flows through it
and the remaining capacity of the link. The selected target
links should forward a large number of flows so that a large
number of flows can be be affected. The remaining capacity of
bandwidth must be lower or equal to the attacker’s capacity.
In fact, a link with low remaining capacity is attractive to the
attacker because it can be overwhelmed with a few amount of
attack traffic. After selecting the target link, the attacker selects
the decoy server and bot pairs to generate traffic. Decoy servers
are used to receive the attack traffic from the bots and they
are owned by the attacker. The bots are malicious programs
residing in users’ computers which is capable of generating
unnecessary traffic to any destinations. The selection of a pair

14

L

B
s2

s4

s1 t1

t2

t5

s3

t4

5
6

7
8

9

10

s5

t3

C

Fig. 2: An example.

< bot, decoy server > is done in such a way that the traffic
passes through one of the targeted link. An attack flow cannot
congest a link, but when a large number of flows pass through
a link it becomes overwhelmed. As a result, the regular traffic
that passes through the target links suffer from packet drop
and a low data rate.

IV. TUNNEL CREATION

A. Problem I Definition

Problem I: Find virtual tunnels to forward the flows so that
the total number of used links is minimized while ensuring the
link capacity constraint.

In this problem, we are given the topology and the flows
and we minimize the total number of links used for forwarding
the traffic. This is because there is a direct relation between
the number of used links and the number of rules. Let us
assume that there are K flows {f1, f2, ..., fK}. A flow is
defined by three tuples fi = (si, ti, ri), where si, ti, and ri
are the gateway node of the source, destination, and data-rate
of flow fi, respectively. Let, fi(u, v) denote whether flow fi
travels through link (u, v). fi(u, v) = 0 (or 1) means flow
fi travels (or does not travel) through link (u, v). We will
ommit the subscript i if any of the flow travels through (u, v).
Therefore, the problem can be expressed as the following:

minimize
X

(u;v)2E

f(u, v)

subject to ∀(u;v)2E
KX
i=1

fi(u, v)× ri ≤ C(u, v)

∀1�i�K∃pi
∀(u;v)2pi

fi(u, v) = 1

(1)

Here, C(u, v) denotes the capacity of link (u, v) and pi
denotes the path from si to ti. The first constraint indicates
that the data rate of the flows going through any link cannot be
greater that the capacity of the link. The second constraint en-
sures connectivity between the source and destination gateway
of the flows.

B. A Grouping-based Solution

The problem is NP-Hard and we use hierarchical and k-
means clustering to find a solution. The problem is similar
to the steiner tree problem, where the terminal vertices are
the sources and destinations of the flows. If we consider the
weight of each link to be the same, the steiner tree contains the
minimum number of links. Since we are using the clustering
techniques, there is no approximation ratio of this solution. We
first group the gateway nodes based on the shortest path dis-
tance among them. We use a hierarchical clustering approach
to group the nodes. Parameters of hierarchical clustering are

set to get a desired number of groups. After getting the desired
groups, we discard the intra-group flows. This is because the
distance between the source and destination gateway nodes
much are smaller than that of the inter-group flows. It is
not beneficiary to create or use tunnels for a flow that can
travel short distance. The intra-group flows will be forwarded
according to the existing forwarding rules. Now the problem
is basically a min cost multi-commodity flow problem and the
solutions are linear programming based. We propose a greedy
solution that is fast without a performance guarantee.

Next, we describe the proposed greedy solution. We first
pick a couple of groups and create tunnels between them. To
create the tunnels, we find routing paths of the flows using the
minimum number of links. Then, we pick a flow between the
groups and compute a shortest path routing from the source to
destination gateway nodes. The edges on the paths are added
to the bucket of picked-up edges. Then we pick another flow
and it is routed in the way that adds minimum number of
new edges to the picked-up edges. We maintain the capacity
constraint when we pick up an edge for routing new flows.
After assigning all paths to all of the flows, we get the final
set of picked-up edges that will form the tunnels. The number
of links to forward the flows has a great impact on the number
of rules. Usually, to forward a flow through a link we need a
rule at the egress SDN switch. Some rules forward multiple
rules but in general, a less number of links need less number
of rules.

After that, we create the tunnels using the links we picked
for each flow using the k-means clustering technique. The links
are considered as features and the clusters are considered as
tunnels. We select the number of clusters that produce the least
number of rules.

R(κ) =

�X
k=1

KX
i=1

|P (fi)− Ck|+ |Ck| (2)

Here, P (fi) is the set of links used to forward fi. Ck is
centroid of the kth cluster which means the set of links on
the tunnel. The first part of the equation is for the links that
are not on the tunnel. We need a special forwarding rule for
each such link. The second part is the length of the tunnel
because we need a rule for each link in the tunnel. The special
forwarding rules get priority over the tunnel forwarding rules.
There is a trade-off between the number of rules and the value
of K. When κ = 1, almost all of the flows will be forwarded
using special rules. Therefore, the number of rules is very
high. When κ = K, then each flow will be forwarded through
a tunnel, then the total number of rules for tunnels will also
be high. When κ is in between, then the number of special
rules and the number of tunnels are both small. Therefore, the
total number of rules will also be small.

C. An Example

Let us consider the example in Fig. 2. There are seven
flows which are listed in Table I. We group the gateways
using hierarchical clustering and get two groups, {A,B,C}
and {S,X, Y }. As there is only a couple of groups, we

Algorithm 1 Find tunnels
Input: Topology G(V; E), set of flows F .
Output: A set of tunnels T .

1: Procedure: FIND-TUNNELS(G; F)
2: f REMOVE(F)
3: E ;; 81�i�jNjPi ;
4: while F 6= ; do
5: Pi fp : 8p; p0 jp� Ej <= p0g
6: E E [Pi

7: f REMOVE(F)
8: Min 1
9: for k = 1 to jN j do

10: C K-MEANS(P; K)
11: r

Pk
k′=1

PN
i=1 jP (fi)� Ck′ j+ jCk′ j

12: if Min � r then
13: T C
14: return T

TABLE I: Flow Table for Fig. 2

Flow Source Dest Flow Source Dest
f1 s1 t1 f5 s4 t2
f2 s1 t2 f6 s5 t2
f3 s1 t4 f7 s2 t2
f4 s1 t5 f8 s3 t3

need to create tunnels between them. Let us assume that
each link can forward four flows simultaneously. According
to the algorithm, we pick flow f1 and forward it through a
path that uses a smaller number of links. Therefore, f1 is
forwarded using links {1, 2, 3}. Then, we pick f2 and at least
one new edge (9) is needed to forward it through {1, 2, 3, 9}.
After that we pick up f3 followed by f4. Both flows are
forwarded via {1, 6, 12}. Similarly, f5 and f6 are picked up
and forwarded via {14, 8, 3}. Now, we pick f7 and can forward
it through {4, 2, 3, 9} with the minimum new edges. Because
of the exhausted link 4, we cannot use this path. Therefore,
we choose {4, 6, 10} to forward f7 and f8.

Now, we have the features of each flow. According to
k-means clustering, for κ = 4, we get clusters {1, 2, 3},
{1, 2, 6, 12}, {4, 6, 10}, and {14, 7, 3}.

Theorem 1. The complexity of Algorithm 1 O(K2|E|I).

Proof. The complexity of finding a path is O(|V |+ |E|) using
BFS. Updating the capacity of each link and adding links to the
bucket takes O(|E|). The complexity of finding all the paths
of K flows is O(K(|V |+ |E|)). Therefore, finding features of
all flows takes O(K(|V | + |E|)). The most time consuming
part of this algorithm is the k-means clustering which takes
O(K|E|I) , where I is the number of iterations to converge.
Therefore, the algorithm takes O(N2|E|I)

V. TUNNEL ID ASSIGNMENT

A. Problem II Definition

Problem II: Find an ID assignment so that the number of
forwarding rules is minimum.

In this problem, we assume that the tunnels are already
created and we need to assign IDs to them in such a way that
the total number of rules is minimized. There are |T | number
of tunnels T = {t1, t2, t3, ...}. We need to find a mapping

α : T → Z+ so that the total number of rules for all tunnels
(|ρ(α)|) is the minimum. The problem can be expressed as
follows:

minimize |ρ(α)|
subject to ∀t2T∀ni2t∃r2�(�) OUTPUT(r) = ni+1

(3)

Here, ρ(α) denotes the set of rules for α ID mapping. Each
tunnel t ∈ T is a ordered set of nodes n1, n2, OUTPUT(r)
denotes the action of rule r which is next hop node to forward.
The constrains implies that there must be a rule for each node
of the tunnel. To find the best ID assignment function, we first
start with a simple tunnels structure where all of the tunnels
travel through a specific node. Then we use this basic solution
to solve general cases.

B. Finding the Best α in Simple Structure

In this subsection, we present an ID assignment method
for simple structure. A simple structure is a group of tunnels
where there exists a node that is a part of all of the tunnels
in the group. We denote the node that is a part of all tunnels
as the break-point. We divide the tunnel ID into two parts:
ID prefix and ID suffix. All of the nodes before the break-
point (pre-breakpoint nodes) use the ID prefix as matching
criteria. This is because there is no need to output to multiple
ports at pre-breakpoint nodes and all of the flows that are
travelling through these tunnels are moving towards the break-
point node. Therefore, the pre-breakpoint nodes will have
forwarding rules in this format: “if Tunnel ID starts with ID
Prefix, then output to port X”. The value of the ID Prefix will
be assigned in the complex structure.

All of the nodes after the break-point node including it-
self (post-breakpoint nodes) may have multiple outputs and
matching criteria based on the tunnels. We reserve some bits
for each post-breakpoint nodes in the ID suffix. The number
of reserved bits is the number of bits needed to represent the
used output ports. For example, if the number of output ports
is three, we need two bits to represent the output ports. If there
is only one output port, we do not need to reserve any bits in
the ID suffix. Therefore, the post-breakpoint nodes will have
forwarding rules in this format: “if Tunnel ID starts with ID
Prefix + a prefix of ID Suffix, then output to port X”.

C. An Example of Simple Structure

Let us consider the example in Fig 3(b). There are three
tunnels, t1 : A → S, t2 : A → Y , and t3 : B → X . The
break-point node is D. Therefore, the pre-breakpoint nodes
are A and B. The post-breakpoint nodes are D, L, S, R,
X , and Y . Let the ID prefix of these tunnels is 0. Now, we
calculate the number of reserve bits and ID suffixes for these
three tunnels. At node D, there are two different output ports
used. Therefore, we need 1 bit to represent the output ports.
We represent the port of D which is connected to L and R by
0 and 1, respectively. At node L, there is only one output port
used and we do not need to reserve any bits in the ID suffix.
At node R there are two output ports used and the number of
the reserved bits is one. Similarly, we represent the port of R
which is connected to X and Y by 0 and 1, respectively.

Tunnel t1 travels through port 0 of node D. Here, we ignore
the pre-breakpoint nodes, nodes using one output port, and the
last node. This is because the pre-breakpoint node uses the ID
prefix for matching. The nodes with one output port outputs
all of the flows to the same port. The last node forwards the
flows using regular rules. Therefore, the ID suffix for t1 is 0.
Tunnel t2 travels through port 1 of node D and port 1 of node
R. Therefore, the ID suffix for t2 is 11. Similarly, the the ID
suffix for t3 is 10. Therefore, the ID of the tunnels t1, t2, and
t3 are 00, 011, and 010, respectively. The matching criteria
for t1 at nodes A, D, and L are starts-with 0, 00, and 00,
respectively. The matching criteria for t2 at nodes A, D, and
R are starts-with 0, 01, and 011, respectively. Similarly, the
matching criteria for t3 at nodes B, D, and R are starts-with
0, 01, and 010, respectively.

D. Finding the Best α in Complex Structure

In this subsection, we present an ID assignment method for
complex tunnel structure. A complex structure is a group of
tunnels where there exists no node that is a part of all of the
tunnels in the group. We split the set of tunnels in such a way
that each split becomes a simple structure. We convert the
splitting problem to a classic set cover problem. Each node in
the structure is considered as a set and the tunnels go through
the nodes that are the elements of that set. We use the greedy
solution to find a cover and the cover nodes are considered
as the break-point nodes. We create a simple structure from
the tunnels that go through each cover node. If any tunnels
are already a part of the created simple structure, it is not
considered twice.

After getting the simple structures we assign ID prefixes to
them. The number of bits needed to represent the number of
structures is the length of the ID prefixes. For example, if there
are four simple structures, the length of the ID prefixes is two
bits. We assign unique ID prefixes to each simple structure.
After that we apply the tunnel ID assignment method to the
simple structure.

E. An Example of Complex Structure

There are four tunnels, t1 : A→ S, t2 : A→ Y , t3 : B →
X , and t4 : C → X in Fig 3(a). There is no break-points
in this structure so that we can call it s Complex Structure.
We formulate a set cover problem where the universal set U is
{t1, t2, t3, t4}. Each node is a subset of U . For example, subset
A = {t1, t2} and subset B = {t2}. We find the set cover to be
{D,H}. Therefore, we need to create two simple structures
and one bit ID prefix is required. The simple structure created
from set D is shown in Fig. 3(b) and we set 0 as ID prefix. The
simple structure created from set H is shown in Fig. 3(c) and
we set 1 as the ID prefix. After that we assign the tunnel IDs
using the method for the simple structure. Final ID assignment
is shown in Fig. 3(d).

Theorem 2. The complexity of Algorithm 3 is O(|V |2|T |).

Proof. To find the complexity of Algorithm 3, we need to
find the complexity of Algorithm 2. Let us assume that we

D

YH

LA

C

B X

R

S

(a) All tunnels and cover nodes.

D

Y

LA

B X

R

S

1 bit 0 bit

1 bit
ID Prefix 0

0

1

0

1

(b) Forwarding IDs for D.

H

L

C

S

0 bit

0 bit

ID Prefix 1

(c) Forwarding IDs for H .

00

011

010

1

(d) ID assign-
ment.Fig. 3: An example of tunnel ID assignment.

Algorithm 2 Find tunnel ID for simple structure.

Input: Simple structure G(V; E), tunnels T , ID prefix PID .
Output: An ID assignment A : T ! R.

1: Procedure: SIMPLE-ID-ASSIGNMENT(G; T; PID)
2: t any element in T .
3: while n 2 PATH(t) do
4: if TUNNELS(n) = T then
5: B n
6: break
7: ENQUEUE(Q; B)
8: while Q 6= ; do
9: n DEQUEUE(Q)

10: if CHILD (n) > 1 then
11: i 0
12: for c 2 CHILD(n) do
13: SID[c] (i), i i + 1

14: for t 2 T do
15: A(t) PID

16: for n 2 PATH(t) do
17: A(t) A(t) + SID[n]

18: return A

Algorithm 3 Find tunnel ID for complex structure.

Input: Complex structure G(V; E), tunnels T .
Output: An ID assignment A : T ! N .

1: Procedure: COMPLEX-ID-ASSIGNMENT(G; T)
2: 8n2V Sn TUNNELS (n)
3: S fSn : n 2 V g
4: C set cover of S.
5: Create simple structure Gc(V; E) from each c 2 C.
6: 8c2CAc SIMPLE-ID-ASSIGNMENT(Gc(V; E))
7: A

S
c2C Ac

8: return A

pre-compute the PATH(T) for all tunnels. This pre-compute
takes O(|T ||V |) time. Finding a break-point node (Step 3-6)
takes O(|T ||V |) time. Then, O(|V |) time is needed to assign
the ID-suffix to the post-breakpoint nodes. To find the ID of
a tunnel, the algorithm iterates through the nodes on the path,
which takes O(|V |) time in the worst case. Therefore, for all
tunnel it takes O(|T ||V |) times. In total the algorithm takes
O(|T ||V |) times to find ID assignment of a simple structure.

In Algorithm 3, to find the cover set it takes O(|V ||T |)
times. This is because there are |V | subsets and each subset
can hold at most |T | elements. In the worst case, the number
of elements in a cover set can be |V |. Therefore, for all of the
cover sets take O(|V |2|T |) time to find the ID assignment.

Next, we calculate the approximation ratio of Alg. 3. Alg.
3 uses Alg. 2 and the performance of Alg. 3 is a combination
of both. We prove that Alg. 2 produces the optimal number
of rules and calculate the approximation ratio of Alg. 3.

TABLE II: Topology Parameters

Number of Topology I (T-I) Topology-II (T-II)
Nodes/ Sources /Destinations 73/13/15 121 /16/24

SDN switches 45 81
Links 186 298

Theorem 3. The approximation ratio of Alg. 3 is (ln|T |+1).

Proof. To calculate the approximation ratio of Alg. 3, we need
to prove that Alg. 2 produces an optimal ID assignment which
means that the number of rules needed to forward the flows
of all tunnels is the minimum. The post-breakpoint nodes that
have multiple outputs must have at least the same number of
rules as the output ports. A single rule is enough for the nodes
that have one output ports. On the other hand, a rule cannot
selectively forward packets to multiple ports. According to
our system model a rule is used to forward to each port
with a prefix matching criteria. Therefore, the total number
of rules is equal to the number of forwarding ports used. The
approximation ratio of set cover greedy solution is (ln|T |+1)
[20]. Therefore, the approximation ratio of Algorithm 3 is
(ln|T |+ 1), which is O(ln|T |).

VI. SIMULATION

A. Experimental settings

We conduct all of the simulations with our custom built
java simulator. We want to count the number of rules, tunnels,
groups for forwarding the flows. We do not need to analyze
the real transmission time, actual link bandwidth, or packet
drop scenarios. The network topologies we consider in this
simulation contain hundreds of SDN switches, links, flows,
sources, and destinations . Using NS3 or other similar simula-
tors for this kind of large topologies would take a long time to
produce results. This is the reason for building our own java
simulator to get the results in short period.

We generate random topologies by taking an area of 500×
500 square units. We divide the area into 50 × 50 blocks. In
each block, a certain number of nodes are placed at random
locations. We restrict nodes from being placed too close to
other. Then, edges are generated based on distance. When the
distance between two nodes is less than a threshold (70-90
units), we add an edge between them. After that few edges
are added by picking up a pair of nodes randomly. After that,
we attach a source or destination to some of the randomly
selected nodes. We set the capacities of each as 100 Mbps. It
should be noted that in a real-world network, the actual link
capacity varies (100Mbps/1Gbps/10Gbps); we keep them the
same for simplicity. If the link capacity is higher, then we need

(a) Topology T-I. (b) Topology T-II. (c) A complex structure
in T-I.

(d) A complex
structure in T-II.

(e) A simple structure in T-
I.

(f) A complex structure
in T-II.

Fig. 4: Topologies, simple, and complex structure.
a higher number of flows or flows with higher rates to congest
some of the links. This increases complexity and hardens the
proper parameter selection (max data rate of flows, number of
flows, congestion threshold.) Table II shows the properties of
the topologies in details. Then, we generate a specific number
of flows. We first generate all possible pairs of sources and
destinations. After that, the specific number of pairs are chosen
randomly and a flow is created. We set the minimum rate of
a flow to 1 Mbps and the maximum rates are different for
different simulations. The flows that do not travel trough any
tunnel are routed using shortest path routing. Appropriate rules
are added to the nodes for forwarding those flows.

Once the topology and flows are created, we divide the
nodes into groups using the method described in Subsection
IV-B. After that, tunnels are created between each pair of
groups and a tunnel ID is assigned to each tunnel using Alg.
3. Then we count the number of rules after applying the tunnel
rules. We measure the number of rules increased/flow, number
of flows/tunnel for different numbers of flows, maximum data
rate, and nodes in a network. We compare the number of
rules/flow with the shortest path routing approach. All of the
results in the plot are the average of 100 runs. Each type
of simulation is executed with three different numbers of
groups. The numbers of groups for different typologies are
not same because of uncontrolled behavior of the number of
groups in hierarchical clustering. We set a different cutting
distance for the dendrogram of the hierarchical clustering and
get different number of clusters. For topologies I and II, we
have {3, 5, 6, 11} and {3, 5, 9, 12} groups, respectively.

B. Simulation result

Firstly, we observe the effects on numbers of tunnels for
different group settings and flows. Figs. 5(a) and 5(b) show
the number of tunnels for different number of flows in T-I and
T-II. We can observe that for both topologies, the number of
tunnels increases with the increase in the number of flows.

(a) Different of flows in T-I. (b) Different of flows in T-II

Fig. 5: Effects on number of tunnels.
After a certain number of flows, the increase of number of
tunnels reduces. This is because more flows are using existing
tunnels. When the number of groups is higher, the number of
tunnels is also higher in both topologies.

We observe the number of rules/flow and number of
flows/tunnels in our proposed approach by changing the num-
ber of flows in Topology I. Fig. 6(a) shows the number of
rules/flow for different numbers of flows in T-I. We vary the
numbers of flows from 50 to 200 and keep the maximum data
rate at 10 Mbps. The number of rules/flow decreases with the
increase of the number of flows. A higher number of groups
produces a higher number of rules/flow. This is simply because
when the number of flows are higher, the network needs a
higher number of rules to forward them including a higher
number of tunnels. If the number of groups is higher, then the
number of flows between a couple of groups decreases and the
number of flows per tunnel increases. As a result, the number
of rules needed increases.

When the number of flows is 50, the average number of
needed rules for a flow is 3.03 for 3 groups. When the number
of groups is 11, the average number of needed rules for a
flow is 3.69. The number of needed rules/flow increased by
about 21%. When the number of flows is 200, the average
number of rules needed to forward a flow is 1.38 for 3 groups.
When the number of groups is 11, the average number of
rules needed rules to forward a flow is 2.24. The number of
rules/flow increased by about 62% and decreases about 54%
and 39% for an increase of 150 flows for 3 and 11 groups,
respectively.

Fig. 6(b) plots the number of rules/flow for different num-
bers of flows in T-II. We keep the same settings as previous for
this simulation. We observe a similar behavior of the number
of rules/flow as previous. The number of rules/flow is higher
than that of in T-I. This is because T-II has higher number of
nodes and links. As a result, the number of hops is higher and
more rules needed to forward the flows. When the number
of flows is 50, the average number of needed rules for a
flow is 4.07 for 3 groups. When the number of groups is 12,
the average number of needed rules for a flow is 5.22. The
number of needed rules/flow increased by about 28%. When
the number of flows is 200, the average number of rules needed
to forward a flow is 2.22 for 3 groups. When the number of
groups is 12, the average number of rules needed rules to
forward a flow is 3.79. The number of rules/flow increased by
about 70%. The number of rules decreases about 45% and 27%

