Sampling Rate Distribution for Flow Monitoring
and DDoS Detection in Datacenter

Rajorshi Biswas, Sungji Kim, and Jie Wu
Department of Computer and Information Sciences
Temple University, Philadelphia, PA, USA
{rajorshi, sungji.sj.kim, jiewu}@temple.edu

Abstract—Monitoring all the internal flows in a datacenter is important to protect a victim against internal distributed denial-of-service
(DDoS) attacks. Unused virtual machines (VMSs) in a datacenter are used as monitors and flows are copied to the monitors from
software defined networking (SDN) switches by adding some special rules. In such a system, a VM runs a machine learning method to
detect DDoS behavior but it can only process a limited number/amount of flows. When the amount of flows is beyond the capacities of
all monitor VMs, the system sub-samples each flow probabilistically. The sampling rate affects the DDoS detection rate of the monitors.
Besides, the DDoS detection rates of different types of flows are different for the same sampling rate. A uniform sampling rate might not
produce a good overall DDoS detection rate. Assigning different sampling rates to different flows may produce the best result. In this
paper, we propose a flow grouping approach based on behavioral similarity among the VMs followed by hierarchical clustering of VMs.
The sampling rate is uniform among all the flows in a group. We investigate the relationship between the sampling rate and the DDoS

detection rate. Then, we formulate an optimization problem for finding an optimal sampling rate distribution and solve it using
mix-integer linear programming. We conduct extensive experiments with Hadoop and Spark and present results that support the

feasibility of our model.

Index Terms—botnet, DDoS defense, DDoS, flooding attack, network security, sampling rate distribution.

1 INTRODUCTION

A denial-of-service (DoS) attack is a cyber attack that aims
to make a machine or service temporarily unavailable to
its users. Attackers send a huge number of requests to
the victim machine. There are several types of DoS at-
tacks, including SYN flood and UDP flood [1]. The goal
of these attacks is to fill-out the limited slots for the half-
open connection so that the server cannot accept a new
TCP connection. The purpose of the UDP flood attack is
to consume all of the available network bandwidth of the
victim. In this attack, the payloads of the attack packets are
kept large. In a distributed denial-of-service (DDoS) attack,
many attackers - controlled by a master - simultaneously
send requests to the victim.

Based on the locations of attackers, we can divide DDoS
attacks in a datacenter into two types: internal and exter-
nal, as shown in Fig. 1(a). In external DDoS attacks, the
attackers reside outside the datacenter. A commercial DDoS
protection service cannot defend against the internal DDoS
attacks. The filter-based DDoS attack defense mechanisms
such as [2] also cannot protect against internal DDoS attacks.
The clients of a commercial DDoS protection point their
domain to the commercial DDoS protection server. The pro-
tection server creates a private connection with the client’s
server and passes all the requests and responses between
the client’s server and users. When the attackers know the
internal or the public IP address and send attack packets
to that IP address, the packets do not travel through the
commercial DDoS protection server. The security modules
of a datacenter usually remain in the aggregation or core
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Fig. 1: Attacker and sampling rate distribution.
layer of the network. Therefore, internal flows usually do
not go through the security modules. As a result, internal
flows are not monitored.

One way to protect the server against internal DDoS
attacks is to block all internal flows, but there are some ap-
plications, including Hadoop and Spark, that need internal
communication. We conducted an experiment to show how
an internal DDoS attack affects Hadoop. Table 1 shows the
effect of a SYN flood attack on the Hadoop master from
fourteen bots. The bots produce a SYN attack using hping3
tools. The bots fire SYN packets with an interval of 1 ms.
Each packet is 66 bytes long. With this low attack rate, the
mapper time increases to almost double that of without an
attack. With the attack, the MapReduce job failed 50% of the
time. Details will be presented in Section 5.

To protect against internal DDoS attacks, we need to
monitor all the internal flows. To monitor all the internal
flows, unused virtual machines (VMs) are used as monitors.
The monitors run some machine learning approaches to
detect attack behavior in the flows. Obviously, there is a



TABLE 1: Effect of SYN flood attack.

Measurements Normal | Attacked
Killed map tasks 1.18 3.66
MapReduce success rate 100% 50%
Total time for map (ms) 1122082 | 2116012
Total time for reduce (ms) | 360243 438762

limited number of VMs and capacity of a VM is limited.
We assume a VM can monitor a limited number of flows.
If the number of flows is larger than the total capacity, then
each flow is partially copied to the monitors. The partial
copy is done probabilistically. Flow copying is done by the
software defined networking switches. When a flow is sub-
sampled, the DDoS attack detecting rate is also reduced.
Sub-sampling a flow is probabilistically taking a portion of
the packets in that flow. The rate of detection also depends
on the type of attack.

Let us assume that we have a DDoS detection mech-
anism that works based on the arrival time intervals of
packets. If a flow has low arrival time intervals, then it is
classified as a DDoS flow. In the datacenter, we have five
flows, as shown in Fig. 1(b). We assume all the flows have
the same data rate. Flows 2 —+ 1,3 — 1, and 4 — 1 are
normal flows that have a high interval of packets. Other
flows, 6 — 4 and 5 — 4, are DDoS flows that have a small
interval of packets. The monitoring system can handle 50%
of the total packets. If we sample 50% from each flow and
send them to the monitor, the packet arrival interval will
increase for the DDoS flows. Therefore, flows 6 — 4 and
5 — 4 might be classified as normal flows. Let us divide
the flows into two groups such as flows 2 — 1, 3 — 1, and
4 — 1 in group 1 and flows 6 — 4 and 5 — 4 in group
2. If we sample 30% from group 1 and 80% from group
2, then the overall sampling rate remains 50%. A higher
sampling rate for group 2 increases the probability of DDoS
flow detection. On the other hand, 30% samples from group
1 slightly reduce the DDoS detection rate. So, the overall
rate is higher than the previous approach.

It is challenging to find a perfect grouping of flows. The
relationship between the detection rate and the sampling
rate is important. By using the relationship between the
sampling rate and the detection rate of each group, we can
get an optimal sampling rate distribution with the help of a
traditional optimization solver in the given groups of flows.
There is also a trade-off between the number of groups and
computation complexity of finding an optimal sampling
rate distribution. Therefore, a grouping of flows based on
their characteristics and a uniform sampling rate for each
group might be a good solution. In this paper, we focus on
finding an optimal sampling rate distribution among groups
of flows. To the best of our knowledge, we propose a group-
based sampling rate distribution for the first time. Our main
contributions in this paper are the following:

1) We propose a flow grouping approach based on the
behavioral similarity of VMs.

2) We study the relationship between the sampling rate
and DDoS detection rate using an artificial neural net-
work second order regression.

3) Using the relationship between the sampling rate and
DDoS detection we find the sampling rate distribution
among groups that produces the maximum detection

rate.
4) We conduct experiments in a datacenter with 15 SDN
switches and 36 servers with Hadoop and Spark.

The remainder of this paper is arranged as follows. In
Section 2, we discuss some related works and their limita-
tions. In Section 3, we present the network model and an
overview of the monitoring system. Section 4 contains our
proposed sampling rate distribution approach and a formal
definition of the problem. In Section 5, we present some
experimental results that strengthen our proposed solutions.
Finally, Section 6 concludes our paper.

2 RELATED WORK

There exist many works on DDoS detection methods and
flow monitoring. Firstly, there are many statistical and
machine learning methods, including correlation, entropy,
divergence, cross-correlation, co-variance, and information
gain that detect anomalous DDoS requests [3]. In [4], a DDoS
detection mechanism is proposed based on Artificial Neural
Networks. There are several other methods to detect DDoS
attacks, including [5-8].

There are also many works on flow monitoring and
packet sampling. In [9], an adaptive non-linear sampling
method for passive measurement is proposed. The system
dynamically sets the sampling rate for a flow depending on
the number of packets. The sampling rate diminishes with
the increase of packet count in a flow. Their approach sam-
ples a small flow with a large sampling rate and samples a
large flow with a small sampling rate, both of which provide
good accuracy. Several counter-based sampling techniques
are proposed in [10]. The systematic count-based technique
selects packets through a deterministic and invariable func-
tion based on the packet position. The systematic time-
based technique selects packets based on arrival time with a
deterministic interval. The random count-based technique
selects the starting points of the sampling intervals ran-
domly. Adaptive linear prediction [11] increases (or de-
creases) sampling rate in order to identify the new traffic
pattern when the network activity increases (or decreases).

In [12], a multiadaptive sampling technique is proposed.
In addition to adjusting the sampling rate, it adjusts the
sample size. This approach avoids overload of the measure-
ment points. When there is less activity, the multiadaptive
technique decreases sampling rate and increases sample size
to get more information about the network. In [13], the
authors propose a distributed and collaborative monitoring
system called DCM. DCM enables flow monitoring tasks
and balances the measurement load at the switch. DCM can
monitor different groups of flows using different actions.
The system uses bloom filters to represent rules which use
a small amount of memory in switch, but monitoring is
very limited and cannot produce good accuracy. In [14], the
authors use a deep neural network model to build an intru-
sion detection system. They use six basic features for SDN
network without any sampling. In [15], the authors propose
a flow monitoring algorithm to record some features of the
DDoS attack traffic on the data plane.

We discussed three types of existing systems: (1) statis-
tical approaches that analyze packets to detect and block



TABLE 2: Table of notations

Tij Data rate of flow f;;
Sampling rate of flow f;;
Distance (hops) between nodes a and b

Sij
dist(a,b)

A(fij) Node that monitors flow f;;

T(n) Type of node n (receiver, sender, or forwarder)
ri(n) Incoming data rate of n

ro(n) Outgoing data rate of n

0 Node classification threshold

olm,n| 1st level similarity between nodes m and n
o’[m,n] 2nd level similarity between nodes m and n
A Adjacency matrix of flow graph

Dim,n| Dissimilarity between nodes m and n

K Number of groups

Sk Sampling rate for k—th group

Tk Total data rate for k—th group

rk Normalized data rate for k—th group

S Maximum overall sampling rate

Smin Minimum sampling rate for each group

attack traffic (2) dynamic sampling of packets based on traf-
fic volume and other parameters, and (3) machine learning
based systems for detecting attack packets without sam-
pling the packets. Since, there are some differences among
the attackers, victims, and other nodes in the way they
communicate with each other or the master, we can use
that for grouping their communications/flows. None of the
existing works discussed above utilize grouping the flows
based on characteristics of their source and destination. In
addition, the detection rate of DDoS behavior depends on
the sampling rate. The effect of the sampling rate on the
detection rate also depends on the characteristics of the
flows. Therefore, a group-based sampling rate distribution
is necessary to increase the detection rate.

3 SYSTEM MODEL

In this section, we describe the datacenter structure, attack
model, and monitoring system. The overall system works in
three steps. In the first step, the controller divides the flows
into several groups. In the second step, packets in all flows
in each group are analyzed to find the relationship between
sampling rate and accuracy. Then, an optimization problem
is solved to find an optimal sampling rate in each group. In
the third step, the monitoring system optimally assigns each
flow to a monitor. We summarize all the notations used in
this papers in Table 2.

3.1 Datacenter Network Model

Our datacenter is composed of virtual machines (VM),
physical machines (PM), top of rack (TOR) switches, SDN
switches, users, attackers, and a victim. The victim uses
DDoS protection service from a commercial DDoS protec-
tion service provider. The datacenter also has some security
modules that are installed at the top layer of the network.
Therefore, all the external DDoS attack traffics are caught by
DDoS protection server or security modules.

3.2 Attack Model

We assume that the attackers reside in the same datacenter
as the victim. Attackers are controlled by a master who may
reside outside of the datacenter. The attacker is capable of
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Fig. 2: Monitoring system.

launching SYN flood and UDP flood. The attackers cannot
spoof IP addresses and launch an amplification attack. This
is because, in most of the datacenters, the VMs are not
allowed to spoof others” IP addresses and spoofed packets
are blocked at the hypervisor level. Amplification attacks
are not possible nowadays because, new versions of the
operating systems do not reply to an ICMP/ping packet
which is destined to a broadcast address. The attackers
target the master of Hadoop or Spark system and launch
a mix of SYN flood and UDP flood. The goal of the attacker
is to increase the computation time or hamper the operation
of the Hadoop or Spark.

3.3 Monitoring System Overview

Fig. 2 depicts the overall monitoring system. VM 6 is the
victim and master. VMs 3 and 7 are the workers (e.g. data
nodes). Attackers 5 and 8 send DDoS packets to the master
6. VMs 4 and 9 are unused VMs and they will be used as
monitors. Let the capabilities of all VMs be the same and
all flows have equal data rates. A VM can monitor only
one flow. There are 6 flows in the datacenter. To monitor
all the flows we need at least 6 monitors. We have only 2
monitors, so the system sub-samples the flows and copies
33% of the total packets probabilistically to the monitors.
33% of the packets can be copied in many different ways
from the flows. However, the copied packets in each flow
increase the network overhead. The network overhead for
copying a flow is the data rate of the copied flow multiplied
by the number of hops it travels. For example, if the flow
1 — 2 is monitored in VM 4, then network overhead is
r12 X 0.33 x 3, where r15 is the data rate of the flow 1 —
2. 712 x 0.33 is the data rate of the copied flow, and 3 is
the number of hops that the copied packets travel. Flow
1 — 2 can be copied from SDN; and copied flow travels
path SDN; — SDNy — SDNy; — 4. Therefore, the total
increased network overhead for copying all flows is:

C= f”ZEF TijSij X poin dist(p, A(fi;))- 1

Here, I' is the set of all flows, s;; is the sampling rate
of flow f;;, and A is an assignment function that maps a
flow to a monitor VM. The goal of the monitoring system is
to find an assignment that produces the minimum network
overhead.

The assignment process of the monitoring system con-
sists of two steps. In the first step, from the flow graph
G = (V,E) it constructs a bipartite graph G’ = (V', E'),
where V' = V; U V,, V; is the set of flows, and V5 is the
set of monitor VMs. From each flow, edges are added to all



flow VMs. The weight of an edge is the increased network
overhead for assigning that VM to the monitor.

In the second step, it transforms the G’ to a flow graph
G" = (V" E"). V" contains all the vertices of V; and V5,
including a source S and destination D. Then, edges from
S to all nodes in V; are added with capacities equal to the
data rates of the corresponding flows. Edges are added from
all nodes in V, to D having a capacity of the data rate
the monitor can handle. The costs of new edges are zeros.
The cost of other edges are set to the increased network
overheads. Then it finds a max-flow min-cost paths and
the edges with flow indicate the flow assignment to the
monitors [16].

4 SAMPLING RATE DISTRIBUTION

In this section, we present the sampling rate distribution
approach among the flows. We first divide the VMs into
several groups. Then, we group the flows based on the VM
groups. Finally, we assign sampling rates to each group.

4.1 Flow Grouping

We first group the nodes/VMs in the datacenter and then
group the flows by the groups of nodes. We use second level
behavioral similarity to classify the nodes. The uniqueness
of second level behavioral similarity is that the behavior of
neighbors determines the behavior of a node along with its
own behavior. Therefore, two nodes that have similar type
of nodes in their neighborhood are considered similar. When
a group of bots attack, they send a lot of traffic to the victim.
The victims also gets a lot of traffic from users. Therefore,
if there are multiple victims in a network, they should
be similar according to second level behavioral similarity
because they will have a lot of traffic from separate groups
of bots and users. On the other hand, the master will receive
traffic from the bots but not from the users. Therefore, all of
the masters in a network might be similar according to the
second level behavioral similarity. Thus, traffics related to
similar nodes are treated similarly which is not possible in
any other type of grouping approaches including machine
learning and other attribute based approaches [17].

We classify the nodes into three types: sender, receiver,
and forwarder. A sender (or receiver) node’s incoming data
rate is much lower (or higher) than the outgoing data rates.
A forwarder node has similar incoming and outgoing data
rate. We classify the nodes into these three categories based
on general behaviors of attackers and victims. Usually, at-
tackers send a lot more traffic than they receive. A victim
usually is overwhelmed by traffic and thus its incoming
traffic is much higher than the other nodes. Forwarder nodes
are usually neutral nodes which are neither attackers or
victims. The types are considered as first level similarity
and similarity among the neighbors is considered second
level similarity. We use the second level similarity to group
nodes because nodes that have similar types of neighbors
are subject to suffer similarly by their neighbors. The type
of a node n, T'(n) is defined as the following:

receiver,  ifr;(n)/ro(n) > 6,
T(n) = 4 sender, ifr;(n)/ro(n) < %, VA
forwarder, otherwise.

4

Here, r;(n) and 7,(n) are the incoming and outgoing
data rates of node n. 0 is a system-defined threshold. For
example, if § = 2, then a node will be classified as a sender
(or a receiver) if its outgoing data rate is higher than double
(or less than half) of its incoming data rate. If the incoming
data rate is less than double and higher than half of the
outgoing data rate, then it is a forwarder node. The value of
6 can be set based on statistics of the nodes in the network. It
should not be close to 1 because a slight change in flow rates
might change the type of the nodes. On the other hand, it
should not be a large number. In that case, most of the nodes
will be classifed as forwarder nodes.

Next, we define the first level similarity matrix o. o is
a matrix containing similarity between every pair of nodes
based on the type of nodes. o[m,n| contains the similarity
between node m and n. If the types of nodes n and m are
the same, then o[m,n] is equal to 1. If the types of nodes
n and m are different, then o[m,n] is equal to 0 . o can be
expressed as the following:

1’
olm,n] = {O,

Then, we calculate the second level similarity matrix
o’. We use regular equivalence to calculate ¢’. The regular
equivalence is widely used in social network analysis. In
regular equivalence, two nodes are similar if they have
many neighbors who are themselves similar. o[m, n] can be
expressed as the following [18]:

o'lm,n] = aZA[m, klA[n, klo[k,l] + 6[m,n].  (4)
Kl

ifT(m) =T (n),
otherwise.

®)

Here, A is the adjacency matrix of the flow graph. « is
an eigenvalue of o. §[m, n] is 1 (or 0) if m and n are equal
(or different). Equation 4 can be expressed as the following
matrix multiplication form:

o' =aAcA+1. )

Fig. 3(a) shows an example of a flow graph with 10
nodes. A directed edge indicates a flow direction. Inspecting
visually, we can say that nodes 1 and 2 look similar because
they have incoming/outgoing flows from a similar type of
node. They could be masters of a distributed application or
victims of a DDoS attack. So, we should treat the incoming
flows of these nodes the same way:.

In this example, we assume the data rates are equal for
all flows and @ is 2. For node 1, the numbers of incoming
flows (r;(1)) and outgoing (r¢(1)) flows are 3 and 0, re-
spectively. 1;(1)/r,(1) = 3/0 = oo, which is greater than
2. Therefore, node 1 (T'(¢)) is a receiver. Similarly, node
2 is also a receiver. According to the first level similarity,
nodes 1 and 2 are similar. The first level similarity cannot
produce what we expect. If we look at node 10, it has 1
incoming flow and 0 outgoing flows. Therefore, node 10 is
also similar to nodes 1 and 2, which is unexpected. Nodes
{1,2,7}, {3,4,8,9,10}, and {5,6} are receivers, senders,
and forwarders, respectively. Fig. 3(b) shows the similarity
matrix o. Therefore, the similarity among nodes 1, 2, and 7
is 1. Next, we calculate second level similarity among nodes
1,2, and 7. The maximum eigenvalue of the () is oo = 2.75.
Using Equation 4, we calculate ¢'[1,2]. Sender neighbors
of nodes 1 and 2 are {3,4} and {8,9,10}. Forwarder
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Fig. 3: An example of flow grouping using second level behavioral similarity.

neighbors of nodes 1 and 2 are {5} and {5}. Therefore,
o'[1,2) =275 x {(2x 3)+ (1 x 1) + 0} =19.25.

Similarly, we calculate that ¢’[1,7] = 11 and ¢'[2,7] =
13.75. So, we can see that nodes 1 and 2 are more similar
than nodes 1 and 7 or 2 and 7. The similarity score between
1 and 3 is 0. This is because they are different in type and
they do not have any similar neighbors. Using the matrix
multiplication form, we calculate ¢’ (shown in Fig. 3(c),
rounded to the nearest integer).

Then, we group the nodes using the hierarchical clus-
tering algorithm. We formulate the distance matrix from
the second level similarity matrix. The similarity values
between a pair of nodes are subtracted from the maximum
of the similarity values (except the similarity value of a node
with itself) to get dissimilarities. The dissimilarities are used
as distances for hierarchical clustering. The distance matrix
is represented as follows:

max {o'[i,j]} —o'lm,n], ifm#n

I £ G I S
0, otherwise.

Next, we use D to cluster the nodes into K groups. There
is trade off between the number of groups and the execution
time. When the number of groups is higher, the system takes
a long time to find the optimal sampling rate. Therefore,
the system needs to adjust the value of K based on several
parameters including the topology size, machine configura-
tion, and performance of detection algorithm. Firstly, we use
the hierarchical clustering algorithm. We set the maximum
class to be the number of nodes. This clustering will group
the most similar nodes in a cluster which will be the largest
cluster. We pick that cluster and remove all the nodes in
that cluster. Then, we repeat the process K — 1 to find
K — 1 clusters. The rest of the nodes are grouped and
treated as another cluster. The complete approach is shown
in Algorithm 1. The procedure IN-FLOWS(c) returns the
incoming flows of the nodes in set c. Details of the procedure
are not shown due to limited space.

If we use K = 2, then we get groups {1,2,7} and
{3,4,5,6,8,9,10}. Therefore, the groups of flows are {3 —
1,4 —-1,5—-1,8—=29—210— 25— 78— 7} and
{2—5,7— 6,6 — 5}.If weuse K = 3, then we get groups
{1,2,7}, {4}, and {3,5,6,8,9,10}. Therefore, the groups of
flows are still the same because there are no incoming flows
to node 4.

After grouping flows, we need to find the relationship
between the DDoS detection rate and the sampling rate
using an artificial neural network (ANN).

Algorithm 1 Flow grouping

Input: The adjacency matrix A,set of flows F, and number
of clusters K.
Output: A group of flows.
1: Procedure: FLOW-GROUPING(A, F k)

2:  Calculate types T'[n] from flows for each node n.
3: Calculate o from the types T'.
4: a < the maximum Eigen value of 0.
5. o =aAxox A+ 1T
6: Calculate D from o’ using Equation 6.
7: return GROUP(D, k)
8: Procedure: GROUP(D, k)
9: g < 0
10: fori=1to K —1do
11: C' < clusters using hierarchical clustering
12: ¢ + largest cluster in C'
13: Remove all nodes in ¢ from D.
14: g < g UIN-FLOWS(c)
15: r < set of nodes that are not in any cluster
16: g < g UIN-FLOWS(7)
17: return g.

4.2 Relationship between Detection Rate and Sampling
Rate

To find the relationship between the sampling rate and
the detection rate, we need to vary the sampling rate and
record the detection rate for each flow group. We use a pre-
trained model of ANN. The input of the ANN consists of
the features of a certain number of packets. The packets are
grouped based on the order they are received. The ANN
uses two types of features: features of an individual packet
and features of packets in a group. Features of an individual
packet include the following:

« Protocol: The protocol of the packet. A protocol of a
packet can be TCP, UDP, HTTP, or ICMP.

o Packet Size: The total size of the packet in bytes.

e Entropy: The entropy is calculated over all bytes in a
packet using the Tsallis method.

Features of a group of packets are the following:

o Variance in packet size: The variance of the packet size
(in milliseconds) difference between two consecutive
packets.

o Entropy: The entropy is calculated over all bytes in all
packets in a group using the Tsallis method.

¢ Variance in arrival time: The variance of the time (in
milliseconds) difference between two consecutive pack-
ets.
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Fig. 4: Structure of the ANN.

Though there is a protocol number for each protocol,
we use an indexing method to provide a numeric value
for each protocol. In our approach, DNS, TCP, UDP, ICMP,
HTTP, DHCP, and SSH protocols are considered. All other
protocols are considered to be the same. To calculate the
entropy of a packet we use the Tsallis entropy formula
[19]. Let there be N bytes in a received packet p. Then, the
entropy of the packet p is:

1 N—-1
— {1 -y P(p[n})q}- (7)
n=0

E(p) = 1

Here, P is the probability density function of the bytes of
packet p. p[n] denotes the n th byte of p. g is a real parameter
which is called the entropic-index.

We split the packets in each flow by a 60-40 ratio. We
keep the first 60% of the packets in each flow as the training
packets and the rest as the test packets. Then from each flow,
we divide the packets into non-overlapping groups based
on arrival time. Each group contains w consecutive packets.
Then the four features of all packets are organized in a
specific order. Then, the three group features are appended.
For example, if we have w = 5, then the total number of
inputs of the ANN is 5 x 4 4 3 = 23. The class of each input
is either regular or DDoS. The packets in the flows from
the attackers to the victim are considered as DDoS packets.
Other packets are considered as regular packets.

From the test packets, we pick a portion of the packets
from a group. From each group, packets are picked with
different probabilities. For example, if we have two (w = 2)
groups of flows and from each group, we pick a packet with
10 different probabilities, then there will be 10 x 2 = 20
different test packet groups. From each test group, we
formulate a test dataset. Using the retrained model, we
calculate the DDoS detection rate of each test dataset.

The details of the ANN structure are shown in Fig. 4.
We have 4w + 3 inputs in the input layer. We have two
hidden layers with w and 2 neurons. We use the most
commonly used activation function, ReLU, as the activation
function in our ANN. This structure works well to differ-
entiate between DDoS and regular flows. This two-hidden
layered ANN works much better than a one-hidden layered
ANN. The relationship depends greatly on the machine
learning model. If the model is very good and can detect
the attack with even 1% of the sampling rate, then all of
the relationships will be straight lines parallel to the X-axis.
In that case, any sampling rate is good. In practical it is
impossible to find a perfect model because of the dynamic
attack behavior. If the model is changed, then it is required
to retrain using the train dataset. In this paper, we are not
focusing on finding the ANN structure that performs best.
We assume the machine learning model is not perfect. We
are focusing on finding out how the sampling rate affects
the DDoS detection rate.
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After getting the DDoS detection rates of each test
dataset, we apply second-order polynomial regression to
find the relationship between the sampling rate and the
DDoS detection rate for each group.

Let there be K number of groups. We denote the relation-
ship between the sampling rate and DDoS detection rate for
a group k as fi(s). Here, k = 0,1,2,..K — 1 is the group
number and s is the sampling rate. The total data rate of all
flows in group k is 7. The problem can be expressed as the
following;:

K—-1
> fulsk) x
k=0

maximize:

Kol 8)
subject to: Z S X1 <8, Vst > Smin

k=0

Here, 77, is the normalized data rate of group k. .S is the
maximum overall sampling rate that the system can process.
Smin is the minimum sampling rate that produces good
accuracy. We consider the sampling rates as integer-valued
and the problem as a mixed-integer program. The problem
can be solved using any optimization problem solver.

5 EXPERIMENTS
5.1 Experimental settings

We first present the datacenter structure. Fig. 5 shows the
datacenter structure. The datacenter is composed of 35
servers, 15 SDN switches, and some regular L2 switches. All
the servers except the gateway are Dell PowerEdge 210 (2
cores 2.4 GHz processor, 4 GB RAM, 500 GB HDD) servers.
Each server has at least two gigabit Ethernet ports. The SDN
switches are Pica8 p-3922.

We set up two networks: a control network and a data
network. In the control network, all management ports of
SDN switches and the SDN controller (gateway) are con-
nected through an L2 switch. SDN switches are configured
as the out-of-band controller, which means the control plane
and the data plane are separated. The dotted lines in Fig. 5
show the control network. Therefore, our control network is
a star topology. In the data network, the data ports of the
SDN switch and the gateway are connected. The topology
is a three-level complete binary tree topology. The gateway
is connected with the root SDN switch and other servers
are connected to leaf SDN switches. We use OpenDaylight
[20] as the SDN controller, which is installed in the Gateway.
For flow rule generation, we use the L2Switch plugin with
OpenDaylight. Next, we set up a Hadoop cluster on server
34 and 16 other servers (all even numbers). Server 34 is
configured as the namenode and even-numbered servers
are configured as data nodes. We configure the Hadoop file
system to have three replications of files and set yarn as the
resource manager.

Then, we generate some text files for input to a MapRe-
duce program. The text files are generated by taking a
word randomly from a dictionary. In our experiments, we
generated 100 text files each having a size of about 10
MB. Therefore, the total input is 1 GB of text files that are
uploaded to the Hadoop file system. We run the WordCount
or WordRank program on the input files to generate normal



TABLE 3: Groups of nodes for Flows I using Algorithm 1

Group 1 Group 2 Group 3 | Group 4 Group 5 | Group 6
K=2 12, 33,34 | rest of the nodes
K=4 12,33,34 | 16,22,26 2,4,20 rest of the nodes
K=6 12,33,34 | 16,22,26 2,4,20 6,8, 10, 14, 18, 24, 28, 30, 32 0,1,3 rest of the nodes
# of packets | 793,340 476,068, 2,139,044 (for K=2) | 314,351 1,008,455, 1,348,625 (for K=4) | 60,142 280,028

TABLE 4: Groups of nodes for Flows II using Algorithm 1
Group 1 Group 2 Group 3 | Group 4 Group 5 Group 6
=2 26, 33,34 | rest of the nodes

K=4 26,33,34 | 12,14,20 2,20,26 | rest of the nodes
K=6 26,33,34 | 12,14,20 2,20,26 | 10,16,18,22 6,8,24,28 | rest of the nodes
# of packets | 649,829 384,961, 2,282,555 (for K=2) | 597,192 495,014, 1,300,402(for K=4) | 465,218 340,170

traffic. The MapReduce framework first splits the files by a
new line and sends them to worker nodes for processing.
This step creates much internal traffic. After processing
parts of the data, the workers send their results to multiple
workers depending on the keys of the result. This process
also creates a lot of internal traffic. The final output from the
reducer is also stored in the Hadoop file system. Because of
three replication factor, writing to a file also produces much
network traffic.

Then, we install the attacker programs in the 16 (odd
numbered) servers. The attack master 33 runs a web ser-
vice and the attacker program gets commands from it.
The attacker also replies with the response to the attack
master. The commands are usually Linux commands. We
install popular attacking applications such as hping3 [21]
and packETH [22]. Using hping3, we can launch SYN flood,
UDP flood, and malformed packet attacks with different
data rates. hping3 is not capable of randomizing the sending
interval and packet size. With packETH, we can launch at-
tacks with random sending interval and size. The attacks are
targeted against the Hadoop master 34. The Hadoop master
program listens on port 9000. Therefore, the attackers send
the packets targeting port 9000.

We simultaneously run several WordCount programs
and a mixed type of attack and capture incoming packets
from the 34 servers (except the gateway) using tshark [23].
The packet capture files contain packets of all flows for 10
mins. The files contains about 30 million packets on average.
We classify the flows from odd number servers to server 34
as DDoS flows. All other flows, including the flows due to
the communication of attackers with the attack master, are
considered as regular flows. Then, we train our ANN with
the first 60% of the data (18 million packets). The rest of the
data is grouped using our proposed grouping approach and
relationship functions with the sampling rate are calculated.
Finally, by solving an optimization problem, we find our
desired sampling rate. We compare the uniform sampling
rate with different numbers of groupings. We denote the
flows with WordCount run as Flows 1. We change the
destination of the attack flows randomly and create another
set of flows which is denoted by Flows II

5.2 Experiment results

Firstly, we show a small scale DDoS attack targeting the
Hadoop master (server-34). We start with one attacker and
increase the number of attackers to sixteen. We run the
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Fig. 5: Datacenter topology.
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Fig. 6: Effect of small scale SYN flood attack.
MapReduce WordCount program on the generated 1 GB
text files. Fig. 6 shows the effect of a SYN flood attack.
We vary the number of attackers from 0 to 13 in 5 steps.
The attack is produced using the hping3 tool. We keep
the interval between two SYN packets as 1 millisecond
(ms). Each packet is 64 bytes so that the data rate is 512
Kbps. All the measurements are averaged over 5 runs of the
WordCount program.

Fig. 6(a) shows the number of killed map tasks and
launched reduce tasks with different numbers of attackers.
When the number of attackers increases, the number of
killed map tasks increases. When there is no attack, the
number of launched map tasks is 101, and among them
1 task is killed. When the number of attackers is between
10 and 13, the number of launched map tasks is between
105 and 108, and among them the number of killed tasks is
between 2 and 6. When the number of attackers is between 0
and 10, the number of launched reduce tasks is 1. When the



(e) For K = 6 in Flows I

(f) For K = 6 in Flows II

Fig. 7: Grouping of nodes based on second level similarity.
number of attackers is 13, the number of launched reduce
tasks is between 1 and 4 (1.8 on average).

Fig. 6(b) compares the time spent on map and reduce
tasks with different numbers of attackers. When there is no
attack, the total time spent on map tasks is 1,122, 082 ms.
When the number of attackers is 13, the total time spent on
map tasks is 2,334,606 ms. So, the map time is more than
double than that of with no attack. The reduce time without
attack is 360, 243 ms. Though the reduce time increases and
then decreases when the number of attackers is between 1
and 10, it is normal. This is because the number of launched
reduce tasks is 1 for 1 to 10 attackers. The variation of reduce
time is due to the processing time of the data. When the
number of attackers is 13, the number of launched reduce
tasks is 2 and the reduce time is 1,106,689 ms, which is
three times greater than that of with no attack. Therefore,
due to 512 Kbps SYN flood attack, the map task is affected
more than the reduce task. This is because there are more
map tasks than reduce tasks. Due to the attack, the prob-
ability of communication failure is higher during the map
period than during the reduce period. The MapReduce job
never fails when the number of attackers is between 0 to 10.
When the master is attacked by 13 attackers, the MapReduce
job fails almost 50% of the time. When a MapReduce job
fails in hadoop hosted by commercial service providers, it
is least likely to fail because of back-up VMs which start on
a failure. When this type of incident happens, the time to
finish the job increases dramatically.

Fig. 7 shows the grouping of the nodes according to
Algorithm 1. The groups of nodes are summarized in Tables
3 and 4. In Flows I, we observe that for K = 2, the
attack master 33 and Hadoop master 34 are in the same
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Fig. 8: Sampling rate vs. DDoS detection rate.
group, which is expected. The other worker nodes except 12
and attackers belong to another group. Similar behavior is
observed in other values of K. In Flows II, we also observe
similar behavior for different values of K. Because of the
large number of flows (total of 371 flows in the dataset),
groups of flows are not shown here.

Next, we find the relationship between the sampling
rate and the DDoS detection rate for each group. We train
the ANN that we presented earlier with the first 60% of
the data from each flow. Our ANN shows an accuracy of
93.38% with false positive and false negative rates of 0.8%
and 5.79%, respectively. We keep w = 10 for the ANN.
We vary the sampling rate from 20% to 100%. The DDoS
detection rate for a group is the number of inputs that are
classified as DDoS divided by the total number of inputs in
that group. Using the DDoS detection rates and sampling
rates, we find the relationship functions by second order
polynomial regression.

Fig. 8 plots the relationship functions for different groups
for different K values. Fig. 8(a) plots the relationship func-
tions for K = 2 using Flows I. From the settings we
know that all the attack flows belong to Group 1. Therefore,
Group 1 shows the highest DDoS behavior. Group 2 also
shows some DDoS behavior, which is false positive. Besides,
some normal flows can also have similar behavior (entropy,
variance of arrival time, etc.) to DDoS flows. It is impossible
to build a model that detects DDoS with 100% accuracy. For
K = 2 and K = 4, other groups (except Group 1) show
DDoS behavior for the same reason. Most of the groups’
(Groups 1 and 2 for K = 2, Groups 1 and 4 for K = 4,
and Groups 1, 5, and 6 for K = 6) DDoS detection rates
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Fig. 9: Comparison between uniform and grouped distribu-
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Fig. 10: Uniform and grouped distribution in Spark.
TABLE 5: sampling rates for different K for Flows I.

Sample Group sampling rates
rate K=2 K=4 K=6
20 23,20 23, 20, 20, 20 20, 20, 20, 20, 68, 20
40 97,20 97,20, 20, 20 63, 20, 20, 20, 100, 100
50 100, 32 100, 20, 20, 40 100, 20, 20, 20, 100, 100
60 100, 46 35, 20, 20, 100 100, 21, 100, 21, 100, 100
80 99,74 100, 20, 35, 100 100, 20, 35, 100, 100, 100
100 100, 100 | 100, 100, 100, 100 | 100, 100, 100, 100, 100, 100

increase with the sampling rate. These flows are regular,
having some similar characteristics to DDoS flows. Other
groups’ DDoS detection rates decrease very slightly with the
sampling rate. This is because more packets from a flow help
the ANN find more accurate classification. These flows are
regular and some packets are classified as DDoS packets by
ANN. Fig. 8(b) shows the plot of the relationship functions
for K = 2 using Flows II. As the destination of attack flows
is no longer the server 34 in Flows II, Group 1 in Flows I has
less DDoS behavior than Group 1 in Flows II.

Finally, we formulate the problem using the relationship
functions in each group. We keep the minimum sampling
rate at 20%. This is because a sampling rate less than
20% does not produce good accuracy. Using the CVXPY
optimization library in python, we solve the problem. Part
of the solution is summarized in Tables 5 and 6. We keep
all the sampling rates as integers. Therefore, the overall
sampling rate 20 refers to the sampling rate greater than
or equal to 20 but less than 21. The groups that have higher
DDoS detection rates are assigned higher sampling rates.
For example, in Flows I when K = 2, to achieve an overall
sampling rate of 50%, our approach assigns 100% and 32%
to the flows in Group 1 and Group 2, respectively. This kind
of assignment produces a better overall detection rate.

We compare the performances of the grouping approach
with those of the uniform (no grouping) sampling approach.
Fig. 9 shows the comparison between our flow grouping
approach and the non-grouping approach. When K = 1,
all the nodes belong to a group and the sampling rate is

TABLE 6: sampling rates for different K for Flows II

Sample Group sampling rates
rate K=2 K=4 K=6
20 23,21 20, 20, 20, 22 20, 20, 20, 20, 68, 20
40 23, 46 20, 20, 20, 22 63, 20, 20, 20, 100, 100
50 22,59 20, 20, 20, 67 100, 20, 20, 20, 100, 100
60 22,72 20, 20, 21, 89 100, 21, 100, 21, 100, 100
80 21,98 20, 90, 100, 100 100, 20, 35, 100, 100, 100
100 100, 100 | 100, 100, 100, 100 | 100, 100, 100, 100, 100, 100

distributed uniformly over all flows. When S = 100%, the
overall DDoS detection is the same for all K values. In this
case, all the groups are assigned to a 100% sampling rate,
which is uniform. In other cases, the higher the values of
K, the higher the DDoS detection rate. This is because the
nature of the flows in each group is different. Detection of
DDoS behavior in some of the flows is more sensitive to the
sampling rate. At some points, the overall DDoS detection
rate is higher than the 100% overall sampling rate. For
example, in Flows I for K = 6, the overall DDoS detection
rate is 10.54%, which is higher than the detection rate at
100% sampling rate (10.45). If we look at the sampling rate
distribution, we see that Groups 2, 3, and 4 are assigned
the lowest sampling rates, which produce some false posi-
tives and the total DDoS detection rate becomes higher. We
observe similar behavior in Flows II.

We also conduct experiments by running WordCount in
Spark. We set up Spark master on server 34. Workers are
set up on all other even number servers (server-2, server-
4,.... server-32). We run the WordCount program, which
comes with the documentation of Spark. Spark execution
is more network intensive and WordCount takes longer
than MapReduce WordCount. Fig. 10 shows the compari-
son between our flow grouping approach and the uniform
grouping approach in Spark. We observe similar behavior
to Hadoop in Spark.

We compare our proposed system with the uniform
sampling distribution and k-means grouping approaches
under the same settings. It is hard for our work to have
the same settings and parameters as the existing works.
If we change some of the parameters or settings, then the
originality of them is hampered. Fig. 11 shows the com-
parison between the proposed flow grouping approach and
the k-means clustering approach. We use Flows I for this
experiment. We use in-degree and out-degree as features of
the nodes. By using k-means clustering, we divide the nodes
into K number of clusters. Then, incoming flows of each
cluster are grouped together. We observe that the k-means
grouping produces better DDoS detection rates than the
proposed approach for K = 2 and 4. The k-means clustering
cannot divide nodes into more than 4 clusters. Our proposed
approach with K = 6 outperforms the k-means with K = 4.

The proposed group-based approach is always better
than the uniform sampling rate distribution for different
MapReduce applications and attack strategies. The group-
ing approach does not produce an optimal grouping of
flows. Therefore, we can conclude that our sampling rate
distribution approach works better than the uniform sam-
pling rate distribution. The behavioral similarity-based ap-
proach can produce better grouping of the flows than the
in-degree and out-degree based grouping approach when
the number of groups is large.
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6 CONCLUSION

The internal DDoS is less common than the external DDoS
attack. Compared to the external DDoS attack, it is also
harder to detect and protect against. We can use the func-
tionalities of SDN switches to monitor internal network
flows. In this work, we present a framework for flow moni-
toring in a datacenter. We present a flow grouping approach
based on behavior similarities among the virtual machines.
We formulate an optimization problem for sampling rate
distribution and solve the problem with an optimization
solver. We conduct all the experiments in our datacenter
and compare performances with different granularity lev-
els including the uniform sampling rate. Our experiments
show that increasing the number of groups produces better
detection rates than the uniform packet sampling approach.
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