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ARTICLE

Mitigation of the spectrum sensing data falsifying attack 
in cognitive radio networks
Rajorshi Biswas a, Jie Wua, Xiaojiang Dua and Yaling Yangb

aDepartment of Computer and Information Sciences, Temple University, Philadelphia, PA, USA; 
bBradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA

ABSTRACT
Cognitive radio networks (CRNs), which offer novel network 
architecture for utilising spectrums, have attracted significant 
attention in recent years. CRN users use spectrums opportu
nistically, which means they sense a channel, and if it is free, 
they start transmitting in that channel. In cooperative spec
trum sensing, a secondary user (SU) decides about the pre
sence of the primary user (PU) based on information from 
other SUs. Malicious SUs (MSUs) send false sensing informa
tion to other SUs so that they make wrong decisions about 
the spectrum status. As a result, an SU may transmit during 
the presence of the PU or may keep starving for the spec
trum. In this paper, we propose a reputation-based mechan
ism which can minimise the effects of MSUs on decision 
making in cooperative spectrum sensing. Some of the SUs 
are selected as distributed fusion centres (DFCs), that are 
responsible for making decisions about the presence of PU 
and informing the reporting SUs. A DFC uses weighted 
majority voting among the reporting SUs, where weights 
are normalised reputation. The DFC updates reputations of 
SUs based on confidence of an election. If the majority wins 
by a significant margin, the confidence of the election is high. 
In this case, SUs that belong to the majority gain high reputa
tions. We conduct extensive simulations to validate our pro
posed model.
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1. Introduction

In a cognitive radio network (CRN), users can use a channel if it is not used by the 
licenced user. The licenced users are called primary users (PUs) and the CRN 
users are called secondary users (SUs). Detection of the PU transmission plays an 
important role in the throughput of a CRN. There can be two error cases: the PU 
is transmitting but an SU detects the channel to be free (false-negative), or the 
PU is not transmitting but an SU detects the channel to be occupied (false- 
positive). A false-negative scenario leads the SU to transmit and cause inter
ference with the PU, which is unexpected. A false-positive scenario prevents an 

CONTACT Rajorshi Biswas rajorshi@temple.edu Department of Computer and Information Sciences, 
Temple University, 1925 N 12 th Street, Philadelphia, PA 19122, USA

CYBER-PHYSICAL SYSTEMS                               
https://doi.org/10.1080/23335777.2020.1811387

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-3683-7051
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23335777.2020.1811387&domain=pdf&date_stamp=2020-09-02


SU from using the free channel, which reduces the CRN throughput. These kinds 
of detection errors are very common because of shadowing, multipath effects, 
path loss, and hidden terminals. SUs use the cooperative sensing mechanism to 
reduce the error rate [1]. In this mechanism, SUs share their sensing results with 
other SUs. An SU determines the channel status based on sensing information 
from itself and from others.

There are two kinds of architectures for cooperative spectrum sensing: 
distributed spectrum sensing and centralised spectrum sensing. In 
a distributed system, SUs broadcast their sensing information to their neigh
bours, and they make decisions according to ‘and’, ‘or’, ‘majority’, or other 
rules. In a centralised system, all the SUs send sensing information to the 
fusion centre (FC), and the FC makes the decision. SUs ask the FC for the 
channel status before starting transmissions. Cooperative sensing is also 
divided into two classes: soft combining and hard combining. In the soft 
combining method, SUs do not make decisions about the PU’s presence; 
instead, they send their raw sensing information, including received energy 
and the signal-to-noise ratio, to the FC or to other SUs. The SUs or the FC make 
decisions based on raw information. In the hard combining method, every SU 
makes their own decision and shares that information to the FC or to other 
SUs. The information is basically an array of one bit information that repre
sents the presence of PU in different time slots.

We consider that there are some malicious SUs (MSUs) in the system. The 
number of MSUs are less than the number of benign SUs. MSUs send incorrect 
sensing information to the FC or to other SUs to change the results. Some MSUs 
always say that the PU is absent, which leads to SU’s transmission interfere with 
PU’s transmission. Some MSUs always say that the PU is present, which prevents 
the SUs from using a free channel. Some MSUs are very smart and always say the 
opposite of the truth to fool the decision maker. We assume that the majority of 
SUs are benign so that one can argue that if the majority vote among the SUs 
will give the correct result. In the worse case, the MSUs and the benign SUs with 
wrong sensing information can win the vote. This type of attack is called 
spectrum sensing data falsifying (SSDF) attack.

In Figure. 1, SU 3 remains behind an obstacle. The error rate of SU 3 is greater 
than SU 2, but less than MSU 1. We represent the PU presence as 1 and absence 
as 0. When the PU = 0 (PU is absent), the sensing results of SUs 1, 2, and 3 are 1, 
0, and 0, respectively. The majority decision is 0 (PU is absent), which is correct. 
When the PU = 1 (PU is present), the sensing results of SUs 1, 2, and 3 are 0, 1, 
and 0, respectively. The majority decision is 0 (PU is absent), which is incorrect. 
Therefore, it is important to identify the MSUs and reduce their weights in 
election.

In this paper, we propose an algorithm to calculate the reputations of SUs. 
We introduce a system with distributed fusion centres (DFCs) that keep track of 
reputations of the SUs. To the best of our knowledge, for the first time, we use 
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an adaptive learning rate based on the confidence for reputation calculation. 
We consider the confidence of an election as the difference between the 
majority and minority population. When the confidence level is low, reputation 
increases or decreases at a lower rate. When the confidence level is high, 
reputation increases or decreases at a higher rate. None of the existing works 
use the confidence for reputation calculation, which is an important parameter. 
The adaptive learning rate helps the system identity the MSUs quickly and 
correctly. We conduct extensive simulations with multiple synthetic detests to 
compare our proposed cooperative spectrum sensing scheme with some exist
ing schemes. Our main contributions are as follows:

• We propose an adaptive multiplicative reputation update method that uses con
fidence as a parameter.

• We propose a two level election scheme using a new combining method that also 
considers the confidence from the first level election.

• We conduct extensive simulations with different distributions and different settings to 
support our proposed model.

The remainder of the paper is as follows. Section 2 describes some related works. 
Section 3 describes the system and the attacker model. Our proposed SSDF 
mitigation scheme is presented in Section 4. Some existing and proposed reputa
tion calculation schemes are presented in Section 5. Section 6 presents rules for 
combining other DFCs’ decisions with other DFCs’ observations. In Section 7, 
experimental results are presented. Finally, Section 8 concludes our work.

2. Related work

There are many existing works on cooperative sensing under the SSDF attack. 
Solutions are based on the authentication of SUs [2], the clustering of benign 
SUs into a group, and the reputation-trust of SUs. Authors in [3,4] propose two 
different clustering algorithms based on the hamming distance among the 
sensing results of different timeslots of SUs. An associative rule mining based 
classification is proposed in [5]. Authors propose an apriori algorithm to get 
frequent subsets of the sensing results from all the SUs. The MSUs remain in the 

Figure 1. Example of an SSDF attack.
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frequent subsets of the sensing results. Based on the probability of the PU’s 
presence, SUs are classified into benign SUs and MSUs.

The reputation and trust based evaluation are well-studied in wireless 
sensor networks [6–8] for detecting malicious nodes. A trust-based spectrum 
sensing scheme against SSDF attack is proposed in [9]. In this method, the FC 
selects some of the SUs to make local decisions and the FC combines detec
tion results based on their reliability. Authors in [10] propose a distributed 
spectrum sensing method in which reputations of SUs are computed based on 
deviation from the majority’s decision. If an SU’s sensing result is different 
from (or the same as) the majority, then its reputation is decreased (or 
increased) by one. A trust based dynamic collusive SSDF attack mittigation 
approach is proposed in [11]. The defence scheme called TFCA is based on 
trust fluctuation clustering analysis.

A PU emulation-based testing scheme, FastProbe, creates PU signals to test 
whether the SUs are reporting honestly or not [12]. They propose a scheduling 
algorithm to periodically test the SUs. This detection technique is now ineffec
tive because there is a lot of mechanisms to detect PU emulation signals [13– 
17]. In addition, these mechanisms are based on distribution, mean, and var
iance of energy and transmitter localisation. An MSU can detect the PU emu
lated signal and report the correct result in that timeslot to get a high 
reputation. Then, it can keep reporting false results in other timeslots. The 
reputation-trust based systems use history to calculate SUs’ reputation. On 
every observation, their reputation is updated based on some rules. None of 
them use the confidence of an election for updating reputation.

The SSDF attack can be launched with spoofing and jamming attack [18] 
using a strategy to maximum attacking strategy using spoofing and jamming. 
The attacker utilises an optimal power distribution to maximise the attack 
effects. Spoofing and jamming attacks are launched dynamically to interfere 
with the maximum number of signal channels. However, we are not considering 
a mixed type of attack in this research.

3. System and attacker model

In this section, we define the attacker and the system model. For ease of 
referencing we list all the notations in Table 1.

3.1. System model

We consider a CRN with some SUs and a PU. The PU frequently goes on and off 
in its licenced channel and the PU presence is uniformly random. All the SUs are 
located in a small area and impacted by a PU. In addition, the local sensing 
results of SUs are mutually exclusive. The SUs sense the PU’s licenced channel 
and periodically send sensing results directly to the DFC. DFCs are also SUs, but 
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instead of only sensing, they work as aggregators of others’ sensing results. 
DFCs make decisions based on the sensing results sent from their neighbours.

An SU can become a DFC if it meets certain criteria. A connected dominating 
set (CDS) is formed among the SUs. The CDS is used in wireless sensor networks 
(WSN) to select relay nodes to broadcast a message. The main benefit of using 
CDS in a WSN is that every node can reach a relay node within an 1-hop 
neighbourhood. The difference between CRN and WSN is that nodes are static 
in WSN but mobile in a CRN. Therefore, computing CDS in a CRN is similar to 
mobile ad-hoc networks. There are some existing algorithms for constructing 
a CDS. Authors in [19] present a node-degree-based dominating node selection 
process. In that process, all nodes are initially coloured white. Then, the node 
with the maximum node degree is selected as the root and coloured black. All 
the neighbours of the root are coloured grey. The process proceeds by selecting 
a grey node who has maximum white neighbours. The node is coloured black 
and its white neighbours are coloured grey. The process is complete if there is 
no more white nodes. Finally, the black nodes form the CDS. A minimum 
spanning tree-based CDS is proposed in [20]. First, a spanning tree is con
structed. Then, nodes on the tree are coloured white and labelled according 
to topological order. Nodes are marked based on their positions starting from 
the root. When a node is marked black, its subsequent node is labelled black if it 
does not have a black neighbour. Each black node except the root node selects 
a neighbour with the largest label that is still smaller than its own label and 
marks it grey. Then, the black nodes and grey nodes become the CDS. A marking 
process-based CDS construction is proposed in [21]. A node is marked true if it 
has two unconnected neighbours and the set of marked nodes forms a CDS. 
This marking process generally produces a CDS with many nodes. 
Consequently, the CDS needs to cut off some of the nodes. If a node’s 

Table 1. Table of notations.
M Distributed fusion centre
I Number of SUs report to M
sui i th SU.
PU 1 (or 0) for PU present (or absent).
wt½i� Weight of sui at timeslot t
Dt½M� Decision of M at timeslot t
xt½i� Sensing result of sui at timeslot t
rt½i� Reputation of sui at timeslot t
ρt½M� Confidence of DFC M at timeslot t
δ Sliding window size
η Learning rate
D0t½M� Decision of M from neighbour DFCs’ decisions
ρ0t½M� Confidence of DFC M from neighbour DFCs’ decisions
D00t ½M� Final decision of M
ρ00t ½M� Final confidence of M
Th Threshold for first level election
Th0 Threshold for second level election
Th00 Threshold for combining election results
μ Weight of first level election
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neighbours are covered by other nodes, then it can be removed. An energy 
change-based CDS formation is proposed in [22]. The reputation of an SU can be 
used as weight in this scheme which will prevent the MSUs from becoming 
a DFC. When two nodes come closer, the energy of the ‘hello’ message 
increases, and when they move away from each other, the energy decreases. 
Based on the increment or decrement, the weight of each edge is updated. An 
edge between two nodes means that the two nodes can communicate with 
each other. A positive weight value on an edge indicates that the corresponding 
nodes are coming close to each other. A node’s weight is the summation of the 
weights of its edges. A node with a higher weight is selected as a dominating 
node by lower-weighted neighbouring nodes. This selection process finally 
forms a CDS in the network. A weighted backbone using a small communication 
cost is proposed in [23]. This method also uses a CDS formation which works for 
both homogeneous and heterogeneous networks. The main advantage of 
having a reputation/weight-based CDS formation method is that the MSUs 
cannot get selected as CDS. In this paper, we do not focus on the selection 
of DFC.

In Figure 2, the green SUs are selected as CDS. The black SUs are not 
members of CDS and they can find a green SU within one hop. The SUs in 
CDS become DFCs. Every SU sends their 1-bit sensing result to the neighbouring 
DFC. The DFC runs a weighted majority voting among the received sensing 
results and updates reputation values of the SUs. Then the DFC shares its result 
with other DFCs. After receiving results from other DFCs, a DFC makes a final 
decision combining its own and others’ voting results.

3.2. Attacker model

The DFCs know only the SUs who report sensing information to them. A DFC or 
FC does not know how many SUs are benign or malicious. We assume that the 
number of MSUs is smaller than the number of benign SUs. We assume that all 
the SUs are located in a small area and impacted by a PU and the local sensing 

Figure 2. Cooperative sensing system.
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result of SUs are mutually exclusive. The misdetection probability and the false 
alarm probability are similar for all benign SUs. On the other hand, the detection 
probability and the false alarm probability are higher for MSUs. Based on the 
attacking behaviour, we can classify the attacker’s strategy in four classes:

(1) ‘Random Yes’ Attack: The MSU sends ‘1’ to the DFC regardless of the 
sensing result with α probability. This may happen because the MSU does not 
have a sensing module and tries to fool other SUs. This type of MSU succeeds 
when it makes DFC’s decision ‘1’ when there is no PU present. When α ¼ 1, the 
MSU always sends ‘1’ to the DFC, which is called the ‘Always Yes’ attack. To 
maximise success, the MSU tries to send as many false reports as possible.

(2) ‘Random No’ Attack: This attack is the opposite of the ‘Random Yes’ attack. 
The MSU sends ‘0’ to the DFC regardless of the sensing result with α probability. 
This type of MSU succeeds when it makes the DFC’s decision ‘0’ when PU is 
present. When α ¼ 1, the MSU always sends ‘0’ to the DFC; this is called the 
‘Always No’ attack. The consequence of this attack is more devastating than the 
‘Random Yes’ attack. SUs that know the PU is absent start transmitting, resulting 
in interference with the PU.

(3) ‘Random False’ Attack: The MSU sends the opposite sensing result to the 
DFC with a probability of α. That means when the MSU’s sensing result is ‘1’, it 
sends ‘0’, and when it is ‘1’, it sends ‘0’ to the DFC. When α ¼ 1, the MSU always 
sends the opposite sensing result. This kind of attack is basically a mixture of 
‘Random Yes’ and ‘Random No’ attacks.

(4) ‘Completely Random’ Attack: The MSU sends random sensing information 
with a probability of α. MSU selects ‘0’ or ‘1’ randomly and overwrites the result 
in a time slot with α probability. α ¼ 1 means the MSU sends a random sensing 
result in each time slot. This type of MSU may not be intentionally malicious, but 
it is a threat to the system. Unintentionally, MSUs try to hide their sensing 
process failures by sending random sensing information in the time slot.

Figure 3 depicts these attacks when α ¼ 1. It shows the sensing result of 
a benign SU, an ‘Always No’ MSU, and of an ‘Always Yes’ MSU for timeslot to to t7.

4. Proposed cooperative sensing architecture

Online machine learning is referred to as a learning system where data are 
available to the system in a sequential manner. In our system, SUs keep sending 
sensing results of each timeslot to DFCs. Data from nearby SUs go to the DFC in 
a sequential manner. Let us consider that SU M becomes a DFC and I SUs report 
to M. At time t, the sensing result from su1; su2; ::; suI goes to M. In addition, M 
keeps the weight and reputation of each neighbouring SU. When the sensing 
results from neighbouring SUs arrive at M, it calculates the sensing result based 
on the weighted votes of the SUs’ results. 

CYBER-PHYSICAL SYSTEMS 7



Dt½M� ¼
1; for

PI
i¼0 wt½i�Dt½i� � Th

0; otherwise

�

(1) 

Here, Th is a threshold, which determines the portion required to win the vote. 
For example, if the weights of all SUs are equal, then Th ¼ 0:5 means the 
‘majority’ voting, Th ¼ 1 means the AND voting, and Th ¼ 0 means the OR 
voting. We express the reputation rt½i� of sui at time t as following: 

xt½i� ¼
1; if Dt½i� ¼ Dt½M�
� 1; if Dt½i��Dt½M�

�

rt½i� ¼ f ð�Þ
(2) 

Here, Dt½i� and Dt½M� denote the one bit decisions about the PU presence of sui 

and M at time t. ρt½M� denotes the confidence of election at the DFC M at time t. 
f ð�Þ is called the weight update function (WUF). Different WUFs take different 
parameters, including a common parameter xt . We are not defining the para
meters to make WUFs general. Examples of different WUFs will be discussed in 
Section 5. Let C0 of the SUs report that the PU is absent and C1 of them report 
that the PU is present (C0 þ C1 ¼ I) to M at timeslot t. So, the confidence level of 
M at time t is: 

ρt½M� ¼
C0 � C1

C0 þ C1

�
�
�
�

�
�
�
� (3) 

When someone wins by a significant difference in vote, we conclude that the 
confidence of the election is high. If the confidence is high, then the effect of the 
result will also be high. That is why we use the proposed adaptive multiplicative 
WUF in the Algorithm 1. The complete process is shown in Algorithm 1.

The stated problem is similar to the experts’ opinion aggregation problem 
where an aggregator with little knowledge tries to come to a Yes/No decision. 
Before making any decision, the aggregator asks all of its nearby experts for 
their opinions. Experts respond with Yes/No answers. Based on their decisions, 
the aggregator makes its own decision and calculates their reputation values. 
Reputation values are used for future decision making; a high reputation value 
means that the experts’ decisions will have priority over others with low reputa
tion values. Some literature assume that the aggregator knows the ground truth 

Figure 3. Different attacking strategy of MSU.
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of the result in the next timeslot. They can update the reputation values of 
experts based on differences between their answers and the ground truth. Our 
problem becomes more challenging because there is no ground truth. The most 
challenging part of the problem is to find an SUitable WUF. We discuss some 
WUFs in the next section.

Algorithm 1 Online Learning-Based Spectrum Sensing
Input: D of DFC M, where Dt½i� is sensing result of neighbouring SU i at time t.
Output: Weights for voting w.
1: procedure CONTINUOUS-UPDATEðDÞ
2: Initialise reputation r0½i� for SU i for i 2 NEIGHBOUR (M) and t  0.
3: while true do
4: C0 ← number of 0 s in Dt, C1 ← number of 1 s in Dt.
5: if 

PI
i¼0 wi Dt½i�> Th then

6: Dt½M�  1.
7: else
8: Dt½M�  0.
9: ρt  

C0� C1
C0þC1

�
�
�

�
�
�

10: xt½i� ¼
� 1; if Dt½i��Dt½M�

1; if Dt½i� ¼ Dt½M�

�

11: rtþ1½i� ¼ f ð�Þ
12: wtþ1½i� ¼

rtþ1½i�PI

i¼0
rtþ1½i�

13: Output wtþ1.
14: t  t þ 1.

5. Different WUFs

In this section, we present the existing linear, and multiplicative WUFs with or 
without a sliding window. We propose our adaptive-multiplicative WUF with 
a sliding window.

5.1. Linear WUF

Some articles like [10,24] use linear WUF to update the reputations of sensor 
nodes in WSN. At t ¼ 0, an aggregator can assume all the SUs are benign (highly 
reputed) and decrease reputation based on their behaviour. The drawbacks of 
this assumption are that the system needs some initial time to set up and an 
MSU can start again with a new ID when its reputation becomes too low. Let us 
assume that at t ¼ 0, an aggregator assumes all the SUs’ reputations are 0. After 
evaluation, the aggregator increases the SU’s reputation. Reputation update 
depends on two types of information: first-hand information and second-hand 
information. First-hand information refers to an SU’s own observed information. 
Second-hand information refers to the reputations of other SUs. Based on the 
first-hand information, the reputations update is done as following: 

CYBER-PHYSICAL SYSTEMS 9



fð�Þ ¼ f ðrt½i�; xt½i�Þ ¼ μ� rt½i� þ ð1 � μÞ � xt½i� (4) 

Here, μ is between ½0; 1� and it determines how much the current observation 
affects the reputation. If the SU’s prediction is wrong, then the last part of the 
equation ðð1 � μÞ � xt½i�Þ is negative and the reputation is reduced.

5.2. Multiplicative WUF

In multiplicative WUF, reputations are increased or decreased by a factor. f ð�Þ
for the multiplicative WUF can be defined as following: 

fð�Þ ¼ f ðrt½i�; xt½i�Þ ¼ rt½i� � expðηxt½i�Þ (5) 

Here, η is the learning rate, and it determines the portion of contribution from 
the current observation to the reputation. Another version of this multiplicative 
WUF considering the sliding window can be expressed as the following: 

f ð�Þ ¼ fðrt½i�; xt½i�Þ ¼ rt½i� �
expðηxt ½i�Þ

expðηxt� δ½i�Þ
¼ ri � expðηðxt½i� � xt� δ½i�ÞÞ (6) 

Here δ is the effective evaluation period of the SUs. Dividing it by a factor 
expðηxt� δ½i�Þ nullifies the reputation contribution at timeslot t � δ. Therefore, 
DFCs need to store δ number of past sensing results for every reporting SU. 
DFCs do not need to store past confidence because they can recalculate it from 
the sensing result.

5.3. Adaptive Multiplicative WUF

In our society, the reputations of people do not rise or sink linearly. People have 
to work hard to become popular in politics, school, or work. Once someone 
becomes popular, his/her small positive activities raise his/her popularity to 
a great extent. Our reputation calculation scheme is motivated by this social 
fact. The higher an SU’s reputation is, the more it can be increased (or 
decreased) by correct (or wrong) sensing. If a large number of SUs agree with 
the DFC’s result, then its confidence level is higher. On the other hand, if almost 
half of the SUs disagree with the DFC’s result, then its confidence level is lower. 
Therefore, we propose adaptive multiplicative WUF which is slightly different 
than the multiplicative WUF. Instead of using a constant learning rate η, we 
multiply it by the confidence of the election. The WUF can be expressed as 
following: 

fð�Þ ¼ f ðrt½i�; xt½i�Þ ¼ ri � expðηðρt½M�xt½i� � ρt� δ½M�xt� δ½i�ÞÞ (7) 
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6. Hard but soft combining rule

Consider a scenario where a student is answering tough questions in a job 
interview. Some of the answers are known and some are unknown to the 
student. The student sometimes answers with high confidence and sometimes 
with low confidence. Some of the questions are ambiguous and even the 
interviewer is confused about the answer. In this scenario, the interviewer 
follows some simple rules. When the student is very confident and his answer 
is correct, he gets a high score when interviewers confidence is high. When the 
student answers with less confidence and his answer is correct, he gets a low 
score when interviewers confidence is high. Table 2 summarises this concept.

Observing Table 2, we see that the confidence of interviewer and student are 
multiplied to get the score. The correctness of the answer determines the sign of 
the score. Based on this principle, we propose the ‘Hard but Soft’ combining 
rule. In soft combining methods, SUs send their raw sensing information to the 
FC. In hard combining rules, SUs send one bit information to the FC whether or 
not the PU is present to the FC. Our proposed ‘Hard but Soft’ rule is in between. 
This combining rule is applicable when DFCs share their results with other DFCs. 
Each DFC result has a confidence level. Each DFC shares their one bit result and 
the confidence level of the result with other neighbouring DFCs. When a DFC’s 
result matches (or does not match) with the majority’s result and both its 
confidence level and the aggregator DFC’s confidence level is high, then its 
reputation increases (or decreases) significantly. When a DFC’s confidence or the 
aggregator DFC’s confidence is low, the reputation of the DFC increases/ 
decreases at a low rate. When both of the DFCs’ confidences are low, the 
DFC’s reputation increases/decreases at a lower rate.

Let P and Q be two neighbouring DFCs. P receives a result about the PU’s 
presence Dt½Q� and confidence of result ρt½Q� at time t. P determines its decision 
Dt½P� and confidence ρt½P� using weighted majority rules. Then it compares that 
decision with the decision from the DFC Q at the timeslot t. The reputation of Q 
is updated according to the following: 

rt½Q� ¼
rt� 1½Q� � expðηρt½P�ρt½Q�Þ; Dt½P� ¼ Dt½Q�

rt� 1½Q� � expð� ηρt½P�ρt½Q�Þ; otherwise

�

(8) 

Table 2. Job interview scoring summary.
Student Interviewer

Confidence Answer Confidence Score

High Correct High High
High Wrong High -High
Low Correct High Low
Low Wrong High -Low
High Correct Low Low
High Wrong Low -Low
Low Correct Low Lower
Low Wrong Low -Lower
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The difference between Equation 5 and Equation 8 is, Equation 5 uses only the 
confidence of the aggregator and Equation 8 uses both the aggregator’s and 
sender’s confidence level. This reputation update scheme increases truthfulness. 
When a DFC lies with high confidence, then it has a high chance of being caught 
and penalised by the aggregator. On the other hand, lying with low confidence 
will not affect the aggregator DFC’s result significantly. Let there be N neigh
bouring DFCs of the DFC M who send their aggregated results with confidence 
levels. So, M’s result from other DFCs is as follows: 

D0t½M� ¼
1;
PN

i¼0 wt½i�ρt½i�Dt½i� > Th0

0; otherwise

�

ρ0½M�t ¼ 1
N

PN

i¼0
ρt½i�

(9) 

Here, wt½i� is the weight (normalised reputation) of the DFC i at time t. ρt½i� is the 
confidence of the result of Dt½i� of DFC i. ρ0t is the confidence of the result D0t½M�
from second-hand information, and Th0 is another system variable that is similar 
to Th, which determines the portion required to win the vote.

6.1. Combining results from SUs and other DFCs

As discussed in the previous sections, DFCs get information from two types of 
sources: SUs and other DFCs. Two types of sources produce two results which 
may or may not be the same. The final result is a combination of information 
from SUs and other DFCs. Let’s assume that DFC M’s calculated result from first- 
hand information (neighbouring SUs sensing information) is Dt½M�, and the 
confidence of the result is ρt½M�. From the second-hand information (other 
DFCs shared results) M’s decision is D0t½M� and the confidence of the result is 
ρ0t½M�. The final result is D00t ½M� and confidence of the final result is ρ00t ½M�. 

D00t½M� ¼
1; Dt½M�ρt½M�μ0 þ D0t½M�ρ0t½M�ð1 � μ0Þ> Th00

0; otherwise

�

ρ00t½M� ¼ ρt½M�μ0 þ ρ0t½M�ð1 � μ0Þ
(10) 

Here, μ0 is a system variable, which determines how much a DFC will believe its 
neighbouring SUs. The value of μ0 can change for different DFCs. For example, if 
a DFC finds that its reputation among other DFCs is very low, then it can reduce its 
μ0 to give less emphasis to its neighbouring SUs. This adjustment is helpful when 
a DFC is surrounded by many MSUs. Th00 is another system variable similar to Th 
and Th0.

6.2. Performance analysis

In the worst case, we assume the population of the benign SU is N and the 
population of the MSU is N � 1. MSUs use the ‘always opposite’ attack strategy. 
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The accuracy (probability of correct sensing) of benign SU is p and MSUs’ 
accuracy is very low ð� 0%Þ. Then, the probability distribution of number of 
correct sensing x, is denoted by PðxÞ. 

PðxÞ ¼ N
x

� �

ð1 � pÞxðpÞN� x (11) 

At the beginning, the weights/reputation of all SUs are equal. Therefore, only 
at x ¼ N, the DFC can produce the correct sensing result. The expected 
increase in the reputation of a benign SU is by a factor of PðNÞexpðηρ½M�Þ. 
On the other hand, MSU’s reputation will decrease by a factor of 
PðNÞexpðηρ½M�Þ. For x < N, MSUs are the majority and the DFC’s result would 
be wrong. Therefore, an MSU’s expected increase in reputation is 
PN� 1

x¼0 PðxÞexpðηρ½M�Þ. In order to produce the correct result, the DFC should 
set parameters so that 

XN� 1

x¼0

PðxÞexpðηρ½M�Þ< PðNÞexpðηρ½M�Þ (12) 

We compare the tolerance limit of our proposed WUF and the exponential WUF 
of 99 SUs (50 benign SUs and 49 MSUs). We define the tolerance limit as the 
error rate which violates Equation 12. The tolerance limit of the proposed WUF is 
greater than the multiplicative WUF. The tolerance limit remains constant for 
the multiplicative WUF.

7. Experiments and simulations

In this section, we present the experimental settings and simulation results 
conducted to support our proposed model.

7.1. Comparison among different WUFs

We compare the performances of linear, multiplicative, and adaptive multi
plicative WUFs for two datasets. We consider 10 benign SUs with sensing 
error rates within ½0; 0:3� and 10 MSUs with error rates within ½0:8; 1�. Both 
datasets have sensing results over 200; 000 timeslots. In dataset 1, the MSUs 
show their malicious behaviour from the beginning. In dataset 2, the MSUs 
show benign behaviour to build their reputations up to 100; 000 timeslots. From 
the 100; 001th timeslot, the MSUs start sending the wrong sensing results. We 
also have a couple of small datasets. Dataset 3 contains 10 SUs and 7 MSUs of 
3000 timeslots and dataset 4 contains 50 SUs and 40 MSUs of 3000 timeslots. 
MSUs and SUs in datasets 3 and 4 have error rates within ½0:7; 1� and ½0; 0:3�, 
respectively. Table 3 presents the detailed information about the datasets.
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Figure 4 shows reputations of MSUs and SUs for 500 timeslots in dataset 3. 
We plot the reputation of multiplicative WUF in Figure 4(a). We can observe that 
the reputations of SUs are very high compared to the MSUs. Reputations of SUs 
and MSUs are close to 0 and varied from 1 to 290. Because of the high variation 
in reputations of SUs, any mistake in sensing results by a highly reputed SU 
results in changing the election result. We plot the reputation of adaptive 
multiplicative WUF in Figure 4(b). The reputations of SUs are not as high as 
that of the multiplicative WUF. The variation in reputations of SUs or MSUs are 
not as high as the variation in reputations in multiplicative WUF. As a result, all 
the SUs (or MSUs) get similar priority in election. Therefore, any mistake by an SU 
cannot affect the election result largely.

Figure 5(a) shows a comparison between adaptive multiplicative and multi
plicative WUFs for dataset 1. It is observed that the number of errors in adaptive 
multiplicative WUF is less than that of the multiplicative WUF. Figure 5(b,c) show 
the number of total errors (ER), false positive (FP), false negative (FN), and error 
in simple majority voting (ME) in linear and adaptive multiplicative WUFs for 
different values of μ and η in dataset 1. From the plots, we can observe that the 
number of errors in the linear weight update is very small ð0:02%Þ when μ is 
within ½0:6; 1:0�. On the other hand, the number of errors in the adaptive 
multiplicative WUF is higher than the linear WUF ð0:6%Þ. When η is within 
½0:2; 1:0�, the linear WUF does better than multiplicative in the first scenario. 
However, MSUs can be as clever as they are in the second scenario, where they 
hide their original behaviour until they build good reputations. In that scenario, 
the multiplicative WUF works better. Figure 5(d,e) show the ER, FP, FN, and ME in 
linear and adaptive multiplicative WUFs for different values of μ and η in dataset 

Table 3. Dataset description.
Dataset 1 Dataset 2 Dataset 3 Dataset 4

# of SUs 10 10 10 50
# of MSUs 10 10 7 40
SU error rate [0, 0.3] [0, 0.3] [0, 0.3] [0, 0.3]
MSU error rate [0.8, 1] [0.8, 1] [0.7, 1] [0.7, 1]
# of time slots 200,000 200,000 500 3000

Figure 4. Comparison of reputations for dataset 3.
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2. The lowest error rate with the linear update function is 49%. On the other 
hand, the multiplicative WUF error rate is almost stable at 3:6% for a learning 
rate within ½0:3; 1�. The simple majority rule shows a 40% error for the dataset 1 
and a 32% error for the dataset 2. We also see that the false positive and false 
negative rates are almost same, because we assume the PU’s presence is 
uniformly random. Therefore, we conclude that the adaptive multiplicative 
WUF performs better than linear WUF and simple majority rules.

7.2. Simulation with real primary user Data

In the experiments above, we consider the PU’ presence in each timeslot to be 
random. To get the PU’, we observe a 2.4 GHz Wi-Fi band and assume Wi-Fi users 
to be the PU. We capture the signal power of the sixth channel (2.437 Ghz 
20 Mhz channel) of the 2.4 GHz band and use that information for the PU 
emulation. We observe that the PU remains OFF for long stretches of time 
before suddenly coming ON at some timeslots. Figure 6(a) shows the PU 
behaviour for certain time. We experiment with 1; 000 CR users where 50% of 
them are MSUs. We generate sensing results from 1; 000 users according to their 
sensing error rates, and we compare the conventional FC-based architecture 
with our DFC-based architecture in terms of the number of users affected when 
a wrong decision is made. In the conventional FC-based architecture, all sensing 
results are sent directly to the FC so that every SU is affected by the decision 
made by the FC. On the other hand, only the SUs that report to the DFC are 
affected by a wrong decision.

Figure 6(b,c) show the number of error affected users (ER), false positive 
affected users (FP), and false negative affected users (FN) for 2; 000 timeslots 
for different learning rates ðηÞ of both the FC and DFC-based architectures. We 
keep μ0 ¼ 0:5 for these experiments. We observe that false positive affected 
users are about 96% of the total affected users due to the fact that the PU 
remains off in most timeslots. For both systems, we use adaptive multiplicative 
WUFs. From Figure 6(b,c), we see that for η < 0:4, both systems have no affected 
users. One can argue that if we set a low ðη < 0:4Þ learning rate, we do not need 
the DFC-based system. The low learning rate is dangerous in a scenario where 
SUs/MSUs frequently changes behaviour. For example, in Figure 5(e), the low 
learning rate (η < 0:3) shows a large number of errors. From this perspective, the 
DFC-based architecture shows higher robustness. For η within ½0; 1�, the DFC- 
based system shows no error. From the figure, we can conclude that the DFC- 
based system works better than the conventional FC-based system. Table 4 
shows detailed parameters of the simulations.

Figures 6(d,e) show the number of errors (ER) of FC-based and DFC-based 
architectures for 3; 000 timeslots for different MSUs distributions. We use data
set 4 and keep η ¼ 0:01 for this experiment. In the uniform distribution, all the 
MSUs are distributed uniformly. On the other hand, in the clustered distribution, 
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20% MSUs are distributed uniformly and the remain 80% are distributed in 
a clustered way (existence of a neighbouring MSU increases probability of being 
an MSU). In the uniform distribution, we observe that the FC-based and DFC- 
based architecture show that over a period of 100 timeslot the number of errors 
are approximately 30 and 22. False positive and false negative rates are similar 
for all timeslots. In the clustered distribution, the FC-based and DFC-based 
architecture shows the number of errors are approximately 30 and 4. False 
positive and false negative rates are also similar. The number of errors remains 
the same in clustered FC-based architecture. This is because, the distribution of 
MSUs does not matter to FC as the number of MSUs and SUs are the same. The 
number of errors is reduced in clustered in DFC-based architecture. This is 
because the clustered MSUs can win at some of the DFCs in the first level 
election, but in the second level election, they fail.

Therefore, from the experiments we can conclude that our DFC-based archi
tecture with adaptive multiplicative WUF is more robust to parameter settings. 
The number of errors and affected SUs are also less than other approaches 
mentioned above.

8. Conclusion

Though cooperative spectrum sensing with the FC shows great performance 
when detecting the PU’s presence in CR networks, it suffers from SSDF 
attacks. We propose a CDS-based distributed spectrum sensing mechanism 
where some SUs become DFCs. The DFCs collaborate on spectrum sensing 
information sent by SUs. We propose an adaptive multiplicative WUF for 
reputation updates of SUs, which shows a better performance compared to 
conventional multiplicative and linear WUFs. We consider a 2.4 Ghz Wi-Fi 
channel as an unlicensed channel and Wi-Fi users as PUs, which is more 
realistic than assuming a random PU’s presence. We also show that the DFC- 
based system performs consistently and better than the conventional FC- 
based system.
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