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Abstract Mobile devices are advancing every day, creating a need for higher
bandwidth. Because both the bandwidth and spectrums are limited, maximizing
the utilization of a spectrum is a target for next-generation technologies. Govern-
ment agencies lease different spectrums to different mobile operators, resulting in
the underutilization of spectrums in some areas. For some operators, limited licensed
spectrums are insufficient, and using others’ unused spectrums becomes necessary.
The unlicensed usage of others’ spectrums is possible if the licensed users are not
using the spectrum, and this gives rise to the idea of cognitive radio networks (CRNs).
In CRN architecture, each user must determine the status of a spectrum before using
it. In this chapter, we present the complete architecture of CRN, and we addition-
ally discuss other scenarios including the applications of the CRN. After the Federal
Communications Commission (FCC) declared the 5GHz band unlicensed, Wi-Fi,
LTE, and other wireless technologies became willing to access the band, leading
to a competition for the spectrums. Because of this, ensuring that the spectrum is
fairly shared among different technologies is quite challenging. While other works
on DSRC andWi-Fi sharing exist, in this chapter, we discuss LTE andWi-Fi sharing
specifically.

1 Introduction

Currently, governmental agencies assign wireless spectrums to license holders in
large areas for long terms. For this kind of static spectrum allocation, licensed users
of any spectrumcannot use others’ licensed spectrums. This increase in data transmis-
sion results in a spectrum crisis for the mobile users. One method that can help in this
situation is dynamic spectrum allocation.Users use their spectrum in an opportunistic
manner. This way, if others’ spectrums are free, then any licensed user can use their
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licensed spectrum. Users in this kind of network architecture need to sense channels
to find a free channel. If they findmore than one free channel, they need to choose the
best channel for their transmissions. Generally, the number of users is greater than
the number of free channels and users need to share a channel. While using a free,
unlicensed channel, users must be cautious about licensed transmissions because
if any licensed transmission is detected, the user must vacate the channel. There-
fore, the operations of users can be divided into four major steps: spectrum sensing,
spectrum decision, spectrum sharing, and spectrum mobility. From these four major
operations in a CRN, we can conclude that there are two kinds of transmissions. One
is transmissions in a licensed band; we call this the primary transmissions and we
call the user transmitting in the licensed band a primary user (PU). The other type
is transmissions in the unlicensed band, which we call the secondary transmissions;
the user transmitting in the unlicensed band is an SU (SU).

Transmissions in an unlicensed channel depend on the sensing information of
CR users. There are various methods for detecting transmissions in a spectrum.
Primary transmitter detection, primary receiver detection, and cooperative sensing
are the most common techniques. Cognitive radio (CR) users must be able to decide
the best channel out of all the available channels. This notion is called spectrum
decision. Spectrum decision depends on the channel characteristics and operation
of PUs. Spectrum sharing deals with sharing the same channel with multiple CR
users. Many users can detect that the same channels are free and their channel choice
decisions can be the same. Because of this, the channel must sometimes be shared
between different CR users. While a CR user is transmitting in a secondary channel,
a PU may need to use the channel. In this situation, the SU vacates the channel to
the PU, but a secondary transmission cannot be stopped. The SU must find another
channel and resume transmissions in that channel.

At the endof this chapter,wediscuss somecoexistence scenarios in the 5GHzband
which is currently an unlicensed band. Currently, some Wi-Fi standards (802.11ac
and 802.11ax) are operating in the 5GHz band. Dedicated Short Range Communi-
cation (DSRC) also operates in the 5GHz band. LTE shareholders are now trying to
operate in that band. We discuss two coexistence scenarios: the coexistence between
LTE and Wi-Fi and the coexistence between Wi-Fi and DSRC.

2 Network Architecture of Cognitive Radio Networks

This subsection describes the network architecture and components of a CRN.
Figure1 depicts the whole network system. User devices, primary base stations,
and CR base stations are the components of a basic CRN. In Fig. 1, there are two
channels: channel 1 and channel 2. One primary base station operates in channel
1 and another in channel 2. Transmissions with the primary base station are done
through licensed channels by mobile users, and the transmissions are called primary
transmissions (denoted by solid lines). Transmissions with the CR base station can
be done through either licensed or unlicensed channels and these transmissions are
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Fig. 1 Network architecture
of a CRN

called secondary transmissions (marked by dotted lines). There is also another kind
of transmission in which any user device can transmit directly to another user device.
Therefore, transmissions in a CRN can be grouped into three classes:

• Primary transmissions: Primary transmissions aremost prioritized transmissions
and cannot be compromised by other transmissions. These transmissions are done
in a licensed channel between primary base stations and PUs. Primary transmis-
sions are denoted by solid lines in Fig. 1.

• Secondary transmissions: Secondary transmissions are done in the absence of
primary transmissions. Transmissions between the CR base station and the CR
user are usually secondary transmissions.

• Secondary ad hoc transmissions: User-to-user communications are called ad hoc
transmissions. These transmissions can continue without base stations or other
components of the network architecture. Users create their own network topology
and adapt any routing protocols of ad hoc networks. Users in the gray area form
an ad hoc network in Fig. 1. There are a lot of routing protocols for mobile ad hoc
networks. For example, the proposed routing algorithm in [1], which ensures a
fair amount of communications among nodes and improves the load concentration
problem, can be used in secondary ad hoc networks. The on-demand cluster-based
hybrid routing protocol proposed in [2] is also applicable here.

3 Spectrum Sensing

Secondary transmissions dependon spectrumsensing information, so this step should
be done very accurately. Inaccurate sensing detection can lead to interferences with
the PU that are highly unexpected. Though false alarms (in which channel is not
occupied, but is detected as occupied) do not create interferences with the primary
transmissions, it makes the CR user choose a channel from a narrower range of
channels. As a result, a channel must be shared with many CR users and there
would be increased competition among CR users to access the channel. The authors
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Fig. 2 Classification of spectrum sensing technologies

of [3] present a classification of spectrum sensing techniques. First, they classify
sensing techniques into three groups: noncooperative sensing, cooperative sensing,
and interference-based sensing. Noncooperative sensing is again classified into three
groups: energy detection, matched filter detection, and cyclostationary feature detec-
tion. The classification is depicted in Fig. 2.

3.1 Noncooperative Sensing

In noncooperative sensing, CR users do not share sensing information with one
another. A CR user makes a decision about the PU’s presence using its own sensing
information. We discuss primary transmitter detection and primary receiver detec-
tion, which are presented in [4, 5], in the following subsection.

3.1.1 Primary Transmitter Detection

Transmitter detection techniques emphasize detecting low power signals from any
PU. Low power signals mix with noise from the environment and make it hard for
the CR user to detect primary signals. A low signal-to-noise ratio, multipath fading
effects, and time depression make primary transmissions detection very difficult for
the CR user. We discuss some primary transmitter detection techniques including
energy detection, coherent detection, and matched filter detection.

Energy Detection

This technique does not require CR users to have knowledge of PU signal character-
istics, and it is easy to implement. Because of this, it is widely used to detect primary
transmissions. Let us assume S(n) is the signal received by the CR user, W (n) is
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white Gaussian noise, and P(n) is the original signal from the PU.

H0 : S(n) = W (n) (1)

H1 : S(n) = W (n) + hP(n) (2)

Hypothesis H0 indicates the absence of a PUandhypothesis H1 indicates the presence
of PU transmissions. h denotes the channel gain between the primary and secondary
transmissions. Then, the average energy S of N samples is

S = 1/N
N∑

n=1

S(n)2 (3)

The CR user collects N samples, calculates the average energy, and compares it with
a threshold λ. If the average energy is greater than the threshold, λ, then the CR user
concludes that primary transmissions are present. To measure the performance, we
denote the probability of the false positive (CR detects the presence of PU transmis-
sions when there is no PU transmission) as Pf and probability of the detection as
Pd .

Pf = P(S > λ|H0) (4)

Pd = P(S > λ|H1) (5)

To improve the performance, we need to keep the PU’s transmission secured. There-
fore, the false positive probability should be less than 0.1 and the detection probability
should be greater than 0.9.

Coherent Detection

When characteristics like signal patterns, pilot tones, and preambles of primary sig-
nals are known, coherent detection techniques can be used. These techniques work
better than energy detection in an environment with noise level uncertainties. To
describe this technique, we define the binary hypothesis slightly differently than
energy detection.

H0 : S(n) = W (n) (6)

H1 : S(n) = √
εPpt (n) + √

1 − εP(n) + W (n) (7)

Here, pilot signal energy is denoted by Ppt , and ε is the fraction of energy allocated to
the pilot tone. Pilot signals are a special kind of signals used to send control signals.
Hypothesis H0 indicates the absence of primary transmissions, and hypothesis H1

indicates the presence of primary transmissions.
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If the CR user collects N samples and X̂ p is the unit vector in the direction of the
pilot tone, then the average energy, S, is

S = 1/N
N∑

n=1

S(n)2 × X̂ p(n) (8)

Problems of Transmitter Detection

There are some situations where this detection technique does not work. We dis-
cuss two such situations: the hidden terminal problem and shadowing and multipath
effects. Figure3 depicts a scenariowhere aCRuser remains outside of a base station’s
coverage area and it detects that the channel is free. Because it thinks the channel is
free, it transmits in the channel and interference occurs at the other PU remaining
in the coverage of the base station and the CR user. Figure4 depicts the shadowing
effect. The CR user behind the wall cannot detect primary transmissions. So, the
same problem occurs.

Fig. 3 Hidden terminal
problem

Fig. 4 Shadowing effect
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Fig. 5 Simple RF receiver circuit

3.1.2 Primary Receiver Detection

The most effective way to detect PU transmissions is to detect the primary receivers
who are receiving from the primary channel. The circuit in Fig. 5 shows a simple RF
receiver. It has a local oscillator that emits a very low power signal for its leakage
current in the circuit. A CR user can detect the leakage signals from the RF receiver
circuit and identify the presence of primary transmissions. This detection technique
solves both the hidden terminal and shadowing effect problems. Since the signal
power is very low, it is very challenging and costly to implement the circuit for
primary receiver detection.

3.1.3 Matched Filter Detection

When primary signal features likemodulation type, pulse shape, operating frequency,
packet format, noise statistics, etc., are known, matched filter detection can be an
optimal detection technique. If these parameters are known, the CR user only needs
to calculate a small number of samples. As the signal-to-noise ratio decreases, the
CR user needs to calculate a greater number of samples. The disadvantages of this
technique are the complexities in low signal-to-noise ratio, the high cost of imple-
mentation, and the very poor performance if the features are incorrect.

3.1.4 Cyclostationary Feature Detection

In a broader sense, a signal can be called a cyclostationary process if its statistical
properties vary cyclically with time. In [6], the authors presented a signal classifica-
tion procedure that extracts cyclic frequency domain profiles and classifies them by
comparing their log-likelihood with the signal type in the database. This technique
can work very well in a low SNR. The drawback of this technique is that it needs a
huge amount of computation and thus, a high-speed sensing is hard to achieve [7].
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3.2 Cooperative Sensing

Cooperative sensing deals with sharing CR users’ sensing information and making
decisions by combining this information. A CR user collects sensing information
from other CR users (in a distributed system) or from the base station (in a cen-
tralized system). Then, it analyzes the sensing information and makes a decision
about whether the primary transmission is ongoing or not. Though this detection
technique overcomes the hidden terminal problem and the shadowing and multi-
path problems, it is more complex than previously mentioned detection techniques.
Though its implementation is costly and its time complexity is higher, this technique
has the best sensing accuracy and very few false alarms.

3.2.1 Data Aggregation Center of Cooperative Sensing

This system can be located either in user devices (distributed system) or in base
stations (centralized system). A Data aggregation center is responsible for the
collection and combination of sensing information. The system runs some aggre-
gation functions over the collected data continuously and emits results about
the primary transmission status. There are different methodologies to combine
and calculate, but we must discuss the hard combining and the soft combining
methodologies.

Hard Combining

CR users send their sensing results to the data aggregation center. This is just one
bit information: 1 for the presence of primary transmissions and 0 for the absence of
primary transmissions. After receiving the sensing information, the data aggregation
center calculates the final result. The final result can be calculated based on AND,
OR, or MAJORITY voting.

Soft Combining

Unlike the hard combiningmethodology,CRusers send their raw sensing information
(energy level w.r. to time, signal power, SNR, etc.) to the data aggregation center.
Then, the data aggregation center decides the presence of primary transmissions.
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3.3 Interference-Based Sensing

One user’s transmissions can interfere with another user’s transmissions at the
receivers. The FCC introduced a new model to measure interference. According
to the model, a receiver can tolerate up to a certain level of interference. This limit
is called the interference-temperature limit. As long as CR users do not exceed this
limit, they can use any spectrum. In this sensing method, the PU calculates the noise
level and sends the information to the CR users. The CR users use the information
to control their transmissions to avoid exceeding the interference-temperature limit
for PUs. The authors in [8] present interference-based sensing and a technique to
calculate the interference at a PU.

3.4 Predicting Channel to Sense

Due to limitations in the hardware, the CR users cannot sense a wide range of
channels at a time. In addition, sensing a wide range of channels would raise the
CR users’ power consumption. Instead of sensing a huge number of channels, a CR
user can predict which channel to sense. The authors in [9] model the prediction
as a multi-armed-bandit problem. In the multi-arm-bandit problem of probability
theory, a gambler tries to maximize his reward by playing different slot machines.
The gambler has to decide which slot machine to play, how many times to play each
machine, and in which order to play. The main objective of the gambler is to learn
through every play and to predict which machine to play next so that the cumulative
reward is maximized.

Let us assume there are N SUs and K channels, and SUs are trying to learn from
their past history to predict the next channel to sense. Every CR user keeps a log of
the transmitting channel in an array of length K . We denote the array by Bn where
n ∈ {1, . . . , N }.

Bn[k] =
{
1, if CR user n transmitted in channel k

0, Otherwise
(9)

CR users share their Bn with other CR users. CR users preserve Bn with the time
of arrival tBn . Then, CR users apply ε-GREEDY methods to predict the channel for
sensing [9].

ε-GREEDY Method

This is the simplest solution to the multi-arm-bandit problem. The next channel is
selected randomly with a probability of ε. The rest of the time, the maximum average
valued channel is selected. The average value of channel k is denoted by Ak .
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Ak = 1

N

N∑

n=1

Bn[k] (10)

Another approach that considers forgetting factor β while averaging the channel
values works better. Let transmission logs Bn1 , Bn2 , . . . , Bnz come to a CR user at
t1, t2, . . . , tz . The forgetting factors for t1, t2, . . . , tz are βt1 , βt2 , . . . , βtz , respectively.
The average value of channel k is denoted by Akβ

.

Bnβ
[k] =

Z∑

z=1

βtz × Bnz [k] (11)

Akβ
= 1

N

N∑

n=1

Bnβ
[k] (12)

Bnβ
[k] denotes the effective value of channel k for CR user n. The effective values

of different CR users for a channel are averaged to find the average effective value
of the channel. The channel with the maximum average effective value is selected to
sense next.

4 Spectrum Decision

CRusers get a list of free channels after completion of the sensing process. ACR user
can transmit in only one channel at a time. Therefore, the CR user must choose one
channel among all the free channels. It is likely that any rational CRwould choose the
best channel. A channel can be characterized as “good” or “bad” according to some
channel properties. Channel choice not only depends on channel characteristics but
also on other CR users’ activities. For example, if a channel is crowded by many CR
users, despite being a good channel, a CR may not choose that channel. Normally,
the spectrum decision process is done in two steps. We discuss some characteristics
of channel in the following.

Interference

Interference in a channel reflects the channel’s capacity. If interference is high, its
capacity is low. A CR user should choose a channel with low interference. The per-
missible power of a CR can be calculated from the interference at the receiver.

Path Loss

Path loss is the reduction in power density of an electromagneticwave as it propagates
through space. It is related to both distance and frequency. If the carrier frequency is
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high, the path loss is also high. To reduce path loss, aCR can increase the transmission
power. Interference with other users also increases with the increase of transmission
power. Usually, a CR user chooses a channel with low path loss. If the distance
between the sender and the receiver is short enough that the path loss is ineffective,
then the CR user can ignore the path loss effects.

Wireless Link Error

Errors are more likely to happen in wireless than in wired connections. The error
rate also depends on modulation techniques. These errors are handled by transport
layer protocols. Therefore, CR users choose channels with low link error rates.

Transmission Delay

Different channels have different interference levels, packet loss rates, wireless link
errors, and path loss effects. As a result, different types of link layer protocols
are appropriate for different channels. For this heterogeneity, different transmission
delays are observed in different channels. A CR user might choose a channel with
few transmission delays.

PU Activity

If PU transmissions are very likely in the channel, then the CR cannot continue
transmission for a long time in that channel. In this sense, the CR should choose the
channel with the lowest user activity.

Contagious Frequency Channel

If a CR user can find some channels with contagious frequencies, it can extend the
channel’s bandwidth by combining channels.However, if PUactivities are seen in any
of the channels, it cannot yield one particular channel. As a result, the CR segregates
the channels and takes different channels for transmission. Since the probability of
PU activity increases by the number of combined channels, combining channels may
not be a good spectrum decision in situations with high user activity channels. In
addition, channel aggregation and segregation take time and can increase the latency
of a transmission.
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5 Spectrum Sharing

Usually, the number of available free channels is less than the number of CR users.
Therefore, CR users must share channels. CR users can be competitive or cooper-
ative with each other. A scenario where CR users are competitive can be modeled
as a static game where each CR user tries to maximize their reward by transmitting
in the shared channel. There are three paradigms (underlay, overlay, and interleave)
that are used to facilitate the spectrum sharing.

Underlay

In this paradigm, secondary and primary transmissions are done simultaneously. CR
users transmit in very low power that appears as noise to the primary receiver. Sec-
ondary transmission power can be determined by the interference-temperature limit.
If the secondary transmission power does not exceed the interference-temperature
limit, then it does not hamper the primary transmission. The biggest advantage is
that CR users do not need to sense PU transmissions, so, secondary transmissions
can be operated regardless of PUs’ activities. SUs suffer from packet loss due to
primary transmissions. The authors in [10] propose an energy-efficient algorithm to
minimize the loss rate of SUs. The algorithm also maximizes energy efficiency in
information bits per Joule.

Overlay

In this paradigm, CR users utilize the unused portion of the primary spectrum. Using
a portion of the spectrum reduces interference with a PU who uses the whole spec-
trum. Unlike the underlay, there is no transmission power limit; an SU can transmit
in its maximum power. SUs must have knowledge (codebook, message format, fre-
quency, etc.) about the primary spectrum. CR users can get this knowledge from the
broadcasting of the PU or from a uniform standard. Since the CR user knows the
codebook, it can divide its power between its own message transmissions and relay
the primary message [4].

Interweave

This is the original proposal for CRN. In this paradigm, the SU can only transmit if
there is no PU activity. This requires that one sense the primary channel. SUs use
their detection techniques to detect primary transmissions, and if a channel is not
occupied by a PU, then the SU starts transmitting.
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5.1 Spectrum Allocation in Centralized Interweave Cognitive
Radio Network

In a centralized system, channel allocations to SUs are done by a base station, and
secondary transmissions can occur in the absence of PUs in a interweave system.
We assume a heterogeneous network with M number of PUs m ∈ {1, . . . , M}. An
N number of SUs n ∈ {1, . . . , N } compete with each other to get access to any k ∈
{1, . . . , K } channel among K free channels. Pp(x) and Ps(y) are the transmission
powers of the PU x and the SU y, respectively. gp(x) denotes the gain of the signal
of PU x in the channel and gs(y) denotes the gain of the signal of SU y. So, the total
noise in any channel, k, at any SU, s, is:

Total Noise =
N∑

n=1

gs(n)Ps(n) +
M∑

m=1

gp(m)Pp(m) + Nk (13)

Nk denotes white Gaussian noise from external sources. The first part of the total
noise equation is caused by the signals of other secondary transmissions and the
second part is caused by the signals of all primary transmissions. Therefore, the
signal-to-noise ratio at the SU y in channel k is:

SNRk(y) = gs(y)Ps(y)

Total Noise
(14)

Figure6 shows the bipartite graph made of the SUs and the free channels. An N
number of SUs form a disjoint set, and a K number of channels form another disjoint
set of the bipartite graph. Edges in this graph represent an allocation of the channel
to an SU. The graph in Fig. 6 is a weighted graph whose edge weight represents the
allocation cost of the channel in terms of the decrease in the total signal-to-noise
ratio. Let us assume that after allocating channel k to SU n, the total signal-to-noise
ratio decreases from SNRp to SNRn . Then, the cost of allocation is:

Fig. 6 Channel allocation
algorithm
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C(n, k) = SNRp − SNRn

SNRp
(15)

We can also call C(n, k) the weight of the edge (n, k) in the bipartite graph con-
structed by N SUs and K free channels. Now, the problem comes down tominimizing
thematching cost in a bipartite graph. TheHungarian algorithm provides the solution
to the maximum weight matching [11], which can be adapted to minimize the cost
of the matching by inverting the cost.

6 Spectrum Mobility

After the spectrum choice, any CR user can access a secondary spectrum, but a PU
is sensed to be present when a CR user is transmitting. The CR user must vacate the
channel for the PU. The transmissions of the CR user cannot be stopped and may
be continued in another channel. This process is referred to as spectrum mobility.
The main function of spectrum mobility is to do a spectrum handoff. The spectrum
handoff process consists of two phases: the evaluation phase and the link mainte-
nance phase [12]. The evaluation phase deals with observing the environment to find
handoff-triggering events, like primary transmission detection or channel condition
degradation. After the handoff-triggering event, SUs decide to handoff and go to
the link maintenance phase. In the link maintenance phase, SUs stop the ongoing
transmission and resume transmissions in another free channel. After completing this
phase, SUs return to the evaluation phase. In [13], authors present different handoff
strategies:

• Non-handoff Strategy: In this strategy, theCRuser remains idlewhile the primary
transmissions continue. The CR user expects to transmit in the same channel. This
strategy is inefficient if the primary transmissions continue for a long time. Long
waiting times cause the QoS to degrade. This strategy is preferable when CR users
know the channel statistics and short time primary transmissions are likely in the
channel.

• Pure Reactive Handoff Strategy: In this strategy, the CR user hands off the
channel after detection of a primary transmission in the current channel. The CR
must choose another free channel to continue the transmission. Finding the next
free channel can take time, which is not acceptable for the smooth data connection.
Since the CR user finds the next channel after the handoff-triggering events, the
majority of the time is spent finding the free channel.

• Pure Proactive Handoff Strategy: In the proactive handoff strategy [14], the CR
user finds the next free channel before the detection of the primary channel; the
free channel can work as a backup channel. The CR user can predict the time of the
PU’s presence and handoff channel before handoff-triggering events occur. This
strategy needs hardware support to sense and transmit simultaneously. Still, there
is the possibility of the presence of a PU in the backup channel that could lead to
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transmission delays. Predicting the time of the presence of primary transmissions
requires a lot of machine learning and can lead to a high power consumption by
CR users due to computation complexities.

• Hybrid Handoff Strategy: This strategy is a combination of the pure reactive
and pure proactive handoff strategies. In the hybrid handoff strategy, finding the
free channel is done before the handoff-triggering event (like in the proactive
handoff strategy) but the channel handoff is done after the triggering event (like
reactive handoff strategy). This strategy can achieve a faster channel handoff, but
the possibility that the backup channel will be obsolete is still a concern.

Multiple strategies for selecting the next channel exist. The hidden Markov model
is used to predict channel behavior in [15–17]. However, prediction-based channel
selection can be harmful when predictions are wrong. Delays in selecting the next
channel can exacerbate the QoS. Therefore, we consider a search-based approach to
select the next channel. Let us consider a 2-D search space of time and frequency.
We consider all slots as nodes in a graph. An edge between one node to another
represents the channel switching cost, which is either zero or one. Figure7 shows the
formation of the graph. Let us denote a slot by (T,CH), where T represents the time
and CH represents the channel. For example, the switching cost from (T 1,CH3)
to (T 2,CH3) is 0 because the CR user has actually continued transmission in the
same channel. The switching cost from (T 1, CH1) to (T 2, CH1), (T 2, CH2), and
(T 2, CH4) is 1. The weight of an edge can be found by adding the switching cost
and the channel density. In the figure, darker slots have more channel density. Now,
we get a directed weighted graph. Graph traversal algorithms like Dijkstra can be
applied to this graph to find the best slot. However, spectrummobility is challenging.
When a CR user switches its channel, the routing breaks, and the routing table
needs to be updated. Routing recalculation is a costly and time-consuming process.
Therefore, routing calculation becomes a part of the channel handoff process. Instead
of recalculating the routing before the handoff, a CR user can prepare a backup
channel. The CR user needs to maintain the backup channel periodically so that it
can transfer communication links immediately to the backup channel after a handoff-
triggering event.

Fig. 7 Spectrum search
space
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7 Security Issues in Cognitive Radio Networks

In the last few years, CRNs have become a promising technology in solving the
spectrum scarcity. However, this network technology has a lot of security challenges.
Authors in [18–20] describe a lot of security issues and solutions in CRNs. In a
primary user emulation attack (PUEA), an attacker mimics a PU’s signal to fool
SUs so that they refrain from using the channel. As a result, network congestion and
a denial of service happen. To solve the PUEA, classification methods are used to
classify whether a signal is from a PU or an attacker. Location verification-based
solutions are proposed in [21, 22]. Though a PUEA mimics PU signals, it is very
hard to mimic the signal’s energy distribution of a PU. Based on this principle, [23,
24] propose solutions which classify signals based on power mean, power variance,
and theWald’s sequential probability ratio. Usually, all SUs know all PUs’ locations.
Based on the received signals’ power, an SU can determine whether the power level
is feasible if the signal comes from the PU’s location [25].

The spectrum sensing data falsifying (SSDF) attack is applicable in a cooperative
spectrum sensing system with a data aggregation center or fusion center. Malicious
SUs (MSU) send false information to data aggregation centers so that other SUs get
wrong decisions. In theworst case,MSUs and the benign SUswith thewrong sensing
information can win the election. So, it is important to detect the MSUs and exclude
them from the voting. Solutions for SSDF attacks are based on clustering the benign
SUs to a group and reputation-trust based. Authors in [26, 27], propose two different
clustering algorithms based on the hamming distance between the sensing results
of different time slots of different SUs. Associative rule mining-based classification
is proposed in [28]. Authors propose an apriori algorithm to get a frequent subset
of the sensing results from all the SUs. They assume that the MSU will remain in
the frequent subset of the sensing result. Based on the probability of PUs’ presence,
they classified the SUs into benign SUs and MSUs. A trust-based spectrum sensing
scheme against SSDF attacks is proposed in [29]. In the proposed method, data
aggregation center selects some of the SUs to take local decisions and combines
the detection results based on their reliability. Authors in [30] propose a distributed
spectrum sensing method. The reputation computed based on the deviation from the
majority’s decision.

A PU emulation-based testing scheme, FastProbe, is proposed in [31]. FastProbe
creates PU signals to testwhether the SUs are reporting honestly or not. This detection
technique is now ineffective because there are a lot of mechanisms that detect PU
emulation signals [21, 25, 32–34]. These mechanisms are based on distribution,
mean, variance of energy, and transmitter localization. So, any MSU can detect the
PU-emulated signal from the data aggregation center and report correct results in
that time slot to get a high reputation and keep reporting false results in other time
slots.
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8 Applications of Cognitive Radio Networks in LTE
and Wi-Fi

Wi-Fi and LTE are the most prominent wireless access technologies nowadays. The
migration from PCs to mobile devices leads to an exponential increase of data usage
in wireless technologies. The 84.5MHz of unlicensed spectrum in the 2.4GHz band
which is allocated for Wi-Fi has been saturated and is unusable for new wireless
applications [35]. Therefore, Wi-Fi stakeholders have been showing interest in using
the 5GHz bands. There is up to 750MHz of unlicensed spectrums in the 5GHz band
that falls under the Unlicensed National Information Infrastructure (U-NII) rules of
the FCC.

Some LTE stakeholders, including Qualcomm (an American multinational semi-
conductor and telecommunications equipment manufacturer), are also keenly inter-
ested in the 5GHzbands. They proposed extending the deployment ofLTE-Advanced
(LTE-A) to the 5GHz band using channel aggregation (CA) and supplemental down-
link technologies (SDL). Carrier aggregation in LTE-A enables using multiple carri-
ers to provide high data rates. A supplemental downlink is a multi-carrier scheme for
enhancing the downlink capacity in Evolved High Speed Packet Access(HSPA+).
Some Wi-Fi systems, such as 802.11a and 802.11n, are already operating in 5GHz
bands. However, Wi-Fi stakeholders have been lobbying the government for access
to more spectrums within the 5GHz bands. In response, the FCC issued a Notice
of Proposed Rule Making (NPRM) 13–22 in 2013 [36] that recommends adding
195MHz of additional spectrums for use by unlicensed devices. The Wi-Fi Innova-
tion Act was introduced in the U.S. Senate and House [37] recently. This act directs
the FCC to conduct tests to assess the feasibility of opening the upper 5GHz band,
including the Intelligent Transportation System (ITS) band, for unlicensed use. ITS
stakeholders are very concerned about sharing spectrums with Wi-Fi. They fear that
coexistence with Wi-Fi may severely degrade the performance of ITS applications,
especially safety applications that are sensitive to communication latency. When the
ITS band was first allocated in 1999, the FCC’s original intention was for this band
to support Dedicated Short Range Communications (DSRC) for ITS exclusively. As
a result, ITS protocol stacks and the relevant applications are not designed to coexist
with unlicensed devices. Access to the 5GHz spectrum has become a cause of con-
tention between the LTE, Wi-Fi, and DSRC stakeholders, but more importantly, the
5GHz bands have become a proving ground for spectrum sharing between three het-
erogeneous wireless access technologies: LTE-U, Wi-Fi (802.11ac/802.11ax), and
DSRC. Recognizing the importance of this problem, a research opportunity focusing
on two coexistence scenarios has opened: the coexistence between LTE-U andWi-Fi
and the coexistence between DSRC and Wi-Fi (Fig. 8).
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Fig. 8 Different bands for wireless applications
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Fig. 9 LTE subframe and resource allocation to users

8.1 LTE and Wi-Fi Coexistence

Enabling harmonious coexistence between LTE and Wi-Fi in 5GHz bands is partic-
ularly challenging for two main reasons. First, Wi-Fi networks are contention-based,
whereas LTE communications are schedule-based. Figure9 shows the basic resource
block of LTE. Each user is assigned to a slot in the time and frequency domain of
the spectrum. LTE HeNB (LTE base station) does not sense before transmission. On
the other hand, Wi-Fi is a CSMA/CA-based protocol, which means a Wi-Fi device
senses before transmission and if the channel is occupied, it does not transmit. As
a result, LTE always shows eminent behavior while coexisting with Wi-Fi. In fact,
experiments done by Nokia Research [38] show that in coexistence scenarios, the
Wi-Fi network is heavily influenced by LTE-U interference. Specifically, the Wi-Fi
APs stay on LISTEN mode more than 96% of the time, which causes severe degra-
dation to their throughput. So, the challenge facing LTE and Wi-Fi coexistence is
ensuring a fair share between them. There are several studies on ensuring a fair share
and coexistence between LTE and Wi-Fi. We discuss some of the approaches next.

8.1.1 Self-interference Suppression Technology with LTE and Wi-Fi

Wi-Fi and LTE coexistence can be achieved using self-interference suppression (SIS)
and Full Duplex (FD) capabilities. The SIS is a technique to remove interference
induced by its own transmission. The self-interference cancellation circuits [39] can
be used to achieve full duplex capabilities. We consider a coexistence scenario that
consists of one or more Wi-Fi networks along with several LTE operators. Each
Wi-Fi network is comprised of an 802.11 AP and several wireless users (WUs).
Figure10 shows the LTE and Wi-Fi coexistence scenario. At the beginning, LTE-U
starts the transmission only in the licensed spectrum (without CA). After a while,
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Fig. 10 LTE and Wi-Fi activity and channel switching

LTE aggregates an unlicensed channel, f2, with the licensed spectrum and continues
transmission for some time. After that, LTE releases f2 because of channel quality
degradation, and it aggregates another unlicensed channel, f1. Wi-Fi starts with
CSMA/CA activity (sensing the channel) and starts transmission in channel f1. At
the same time, it also starts sensing f1. When LTE switches channels from f2 to
f1, the Wi-Fi sensing detects the transmission and releases the channel f1. Then,
Wi-Fi again does CSMA/CA on another channel ( f2) and continues transmitting if
the channel is free.

8.1.2 Backward Compatibility Approaches

The previous approach focuses on interactions between Wi-Fi and LTE-U and advo-
cates the design of new FD/SIS-based interference mitigation techniques without
consideration of the issue of fairness. In this section, we study fair spectrum sharing
in heterogeneous systems.

Mechanism 1: Indirect Coordination Using Carrier Sensing

In this scenario, there will be no information flow between LTE and Wi-Fi. Wi-Fi
and LTE-U may not even know what their fair portions of the spectrum should be.
LTE senses the environment and detects the preambles of Wi-Fi and an LTE HeNB
determines how many Wi-Fi APs are within its transmission range. Then, the LTE
HeNB determines its fair portion of the spectrum based on the number of coexistent
Wi-Fi networks. If the LTE-U’s spectrum usage so far is larger than its fair portion,
then the LTE network would slow down. That is, LTE turns off its transmission for a
longer time (i.e., reducing its duty cycle) and lets Wi-Fi transmit more. On the other
hand, if the LTE-U’s spectrum usage so far is less than its fair portion, it may increase
its transmission.



32 R. Biswas and J. Wu

Fig. 11 IEEE 802.11ac packet format

Mechanism 2: Embedding Wi-Fi Information in Preamble

Fair coexistence between LTE-U andWi-Fi can be achieved by modifying the Wi-Fi
preamble. Only the reserved bits in the preamble can be used for this purpose. Useful
information can be embedded in them, and LTE can adjust its operations according
to the information; this enables fair usage. There are some options for embedding
Wi-Fi usage information in the preamble. There are at least 5 reserved bits that may
be used to embed Wi-Fi information. Figure11 shows the Wi-Fi (IEEE 802.11ac)
packet format. Based on the information embedded in the Wi-Fi preamble, LTE can
adjust its operations accordingly to achieve fairness between the two systems, i.e.,
the LTE may reduce (or increase) its duty cycle if the Wi-Fi has been using less (or
more) bandwidth than the fair portion.

Mechanism 3: Indirect Communication Between LTE and Wi-Fi

Thismechanismcan be applied to the scenariowhere there are some service providers
that provide both LTE andWi-Fi networks. Those service providers’ HeNB supports
both LTE and Wi-Fi. Suppose provider 1 has both LTE and Wi-Fi networks and
provider 2 has only Wi-Fi networks. There can be two kinds of communication.
Firstly, indirect communication between provider 1’s LTE and provider 1’s Wi-Fi.
Secondly, communication between provider 1’s Wi-Fi AP and provider 2’s Wi-Fi
AP. The indirect communication may be used for various purposes, such as time
synchronization between LTE and Wi-Fi, exchanging spectrum usage information
(e.g., aggregated bandwidth, aggregated throughput, or the total air time so far), or
for other signaling information to achieve fair spectrum sharing between the two
systems (Fig. 12).

Fig. 12 Indirect communication
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8.2 Wi-Fi and DSRC Coexistence

The FCC allocates 75MHz spectrums in the 5.9GHz band toDSRCwhich is used for
vehicle-to-vehicle communications. The DSRC is based on the IEEE 802.11p stan-
dard. After the FCC declared the 5.9GHz unlicensed band (U-NII-4), Wi-Fi could
operate in that band. The DSRC remains as a PU and others act as SUs. DSRC’s
inter-frame space (IFS) parameters are two times longer than 802.11ac/802.11ax.
Similarly, the slot time used in the MAC backoff is longer for DSRC (13 µs) than
for 802.11ac/802.11ax (9 µs). These differences give Wi-Fi effective priority over
DSRC when accessing the channel. One solution is changing the IFS values of
802.11ac or 802.11ax so that DSRC gets a higher access priority. For instance, we
can increase the values of the Wi-Fi’s IFS parameters by adding a DSRC priority
time offset value, giving priority to DSRC. Only the IFS adjustment cannot guar-
antee DSRC’s protection. Channelization of U-NII-4 by 802.11ac standards affects
DSRC transmission significantly. Experiments by the authors of [40] show that if
the 802.11ac primary channel remains in the same band as DSRC, then adjusting
the DIFS ensures the DSRC’s protection. On the other hand, if the primary channel
remains in another band and some of the secondary channels remain in the same
band as DSRC, adjusting DIFS does not protect the DSRC transmissions.

9 Conclusion

Spectrum is a valuable resource in wireless communication systems. The CRN is
an excellent method of wireless communication in which underutilized channels
can be fairly used. The implementation of a CRN includes PU detection, chan-
nel choice, channel sharing, channel handoff, and routing reestablishment. Though
current mobile devices have hardware that support operation in 2.4, 5 GHz, GSM,
WCDMA, and LTE bands, simultaneous sensing and transmitting are still lacking in
them. The promising thing is that most of the physical layers of communication are
software managed. Therefore, changing the software may adapt some functionality
of CRN more easily than changing hardware. A lot of changes in the base stations
are also required to implement a CRN. Commercial issues inducing usage policies
and charges to SUs or cognitive radio operators are also not defined. Therefore, the
implementation of a CRN is very complex and expensive. In this chapter, we present
the full architecture of CRN at a high level. We discuss applications of a CRN in
the 5GHz band for the coexisting Wi-Fi, LTE, and DSRC. We present different
mechanisms for ensuring the fair sharing of spectrums among different technologies
in the 5GHz band. Thereby, a CRN may become an excellent means of wireless
communication in which underutilized channels are fairly used.
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