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Abstract—A distributed denial-of-service (DDoS) attack is
a cyber-attack in which multiple attackers send out a huge
number of requests to exhaust the capacity of a server, so that
it can no longer serve incoming requests. In this paper, we
propose a mechanism to protect against DDoS attacks originated
within a datacenter. Our system is composed of two parts: flow
monitoring and traffic filtering. In flow monitoring, we formulate
two problems: one for finding flow assignments to monitors
and another for selecting best locations of monitors. The first
problem considers that the locations of monitors are predefined
by the cloud provider and we provide an optimal solution. The
second problem considers that the locations of monitors are not
predetermined and there is a limit on the number of monitors.
We propose a greedy solution for the second problem. The traffic
filtering is trivial, as the DDoS flow can be blocked from the
hypervisor of the source virtual machine. We present simulation
results that strengthen support for our solutions.

Index Terms—distributed denial-of-service, DDoS in datacenter,
quality-of-service, software defined networking, network security.

I. INTRODUCTION

A denial-of-service attack (DoS attack) is a cyber-attack
in which the attacker seeks to make a machine or network
resource temporarily unavailable to its users. CloudFlare is
one of the biggest companies that provides DDoS protection
services. CloudFlare users change the DNS of their domain
and point to the CloudFlare DNS server. The CloudFlare DNS
server returns a CloudFlare IP address instead of the user’s IP
address in DNS lookups. The server located at that IP address
analyzes and filters the attack traffic. However, if the attackers
remain in the same datacenter and know the public or private
IP address of the victim, then the traffic sent to that IP address
does not go through the CloudFlare server. Therefore, the
internal DDoS traffic is not filtered by the CloudFlare server.

There are several methods to find the IP address of the
server behind the CloudFlare protection server. Firstly, some
websites give historical data about a domain, including IP
address changes, sub-domains, and cloud providers. Secondly,
if the target server runs any mail-server, then any email
directly sent from the mail-server contains the IP address of
the target server in its header. Generally, an email addressed
to a wrong username (email) to a mail-server gets a reply
that the username does not exist on the mail-server. Finally, a
brute force approach can find the internal IP of the server. For
example there are 16, 777, 216 class A private IP addresses
(10.0.0.0 − 10.255.255.255). If one second is spent checking
whether an IP address is the targeted server or not, a program
with 194 threads can finish the checking in a day.

The security modules are expensive and they remain in
the core or aggregation layer, which monitors the incoming
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Fig. 1: Internal DDoS attack (A1 and A2: attacker, v: victim).
(or outgoing) traffic from (or to) a datacenter. Therefore, an
existing system cannot protect against internal DDoS attacks.
Fig. 1 shows a scenario of an internal DoS attack. The victim
V uses a commercial DDoS protection service. Therefore,
the external attacker A2 ’s traffic is blocked by the DDoS
protection server. The internal attacker A1 resides in the
same datacenter as V . A1’s traffic does not go through the
datacenter security devices. As a result, the attack traffic
reaches V without any trouble. Other filter based DDoS attack
defense mechanisms such as [1–3] cannot protect internal
DDoS attacks. In order to prevent an internal DDoS attack, we
need to do two things: monitor all the internal traffic and block
the attack traffic. To block traffic, the controller creates a rule
in the hypervisor firewall. Therefore, we focus on monitoring
all internal traffic.

In this paper, we assume that the datacenter switches are
all software defined networking (SDN) switches. Some of the
free virtual machines (VMs) are used as traffic monitors. The
monitors are special network function vitalization (NFV) units
which can detect DDoS behavior of flows. The SDN switches
probabilistically copy packets of each flow to a monitor. A
monitor runs machine learning techniques to detect any DDoS
behavior in the flows it receives. If a monitor classifies that
a flow belongs to a DDoS attack, it creates a firewall rule
at the hypervisor of source VM to stop the flow. The main
contributions are as follows:

• We formulate a problem for assigning flows to monitors,
considering that the location of the monitors are prede-
fined. We provide an optimal solution by reducing the
problem to a max-flow min-cost problem.

• We formulate another problem to optimally select some
of the VMs among the free VMs for monitor placement,
considering a budget on the number of VMs. This is an
NP-hard problem and we provide a greedy solution.

The remainder of this paper is arranged as follows: Section
II presents some related works. In Section III, we present the
system model. Section IV and Section V present the formal
definition of the first and second problem and our proposed
optimal solutions, respectively. In Section VI, we present some
simulation results. Finally, Section VII concludes the paper.
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II. RELATED WORK

There exist many statistical methods including correlation,
entropy, covariance, cross-correlation, and information gain to
detect anomalous DDoS requests [4]. A rank correlation-based
method, Rank Correlation-based Detection (RCD), is proposed
in [5]. An information theoretical approach using Kolmogorov
complexity is used for the detection of DDoS attacks in [6].
A novel DDoS detection mechanism is proposed based on
Artificial Neural Networks in [7]. There are other methods of
detecting DDoS attacks, including [8, 9]. These methods can
be used in monitors to detect DDoS attacks.

In [10], authors propose a three layer DDoS defence system,
called Bohatei. It exploits the functionality of NFV/SDN ar-
chitecture to mitigate distributed DoS attacks. There are some
OpenFlow-based intrusion detection systems which utilize
NFV/SDN functionalists [11, 12].

Authors in [13] propose a scheme to monitor the internal
and external flows in a datacenter. The SDN switches mirror
every flow to monitors. They use a greedy approach to find
the locations for the monitors. At first, they find the districts
that need at least one monitor. Then, they find assignments
inside each district. Their approach sometimes fails to find an
assignment due to the limited number of VMs. They also do
not consider a budget on the number of VMs and fractionally
copy packets of network flows. In [14], authors propose a two-
stage DDoS mitigation framework. In the first step, it screens
the traffic and determines what kind of processing is important
for the flow, including network-layer security and application-
layer security. In the second step, the advanced specialized
detection system is used to detect DDoS behavior.

Large cloud providers such as Amazon EC2 and Microsoft
Azure claim to provide protection against several traditional
network security attacks, including DDoS. The DDoS mit-
igation techniques, including SYN cookies and connection
limiting, are employed within EC2 [15]. Microsoft Azure is
also capable of detecting internal DDoS attacks and remove
the attacking VMs or accounts [16]. Though Azure and EC2
have mechanisms to protect against traditional DDoS attacks,
they recommend the tenants to implement their own protection
mechanism. Besides, many other datacenters are vulnerable to
internal DDoS attacks. Authors in [17] discuss the detrimental
effects by internal attacks including low rate DDoS attack.

The aforementioned works that exploit the benefit, of SDN
and NFV either do not consider the network overhead and
limited budget on number of VMs, or they partially process
the traffic flows. Therefore, it is necessary for a new system
to consider a limited budget on the number of VMs and aim
to partially or fully monitor all the network flows.

III. SYSTEM MODEL

A. Datacenter Model

Our system is composed of physical machines (PM), top
of rack (TOR) switches, SDN switches, users, attackers, and
a victim. The system model is depicted in Fig. 2. The
victim (v) uses a DDoS protection service from a commercial
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Fig. 2: System model.
DDoS protection service provider, which is located outside
the datacenter. The top level of the datacenter is equipped with
flow monitoring devices which monitor incoming and outgoing
traffic to/from the datacenter. Any external attacker or user
(that remains outside the datacenter) has to go through the
DDoS protection server and the datacenter security module.
Therefore, the external attackers are easily blocked by either
the DDoS protection server or the datacenter security module.
The traffic from an internal attacker/user does not go through
the security module or the commercial DDoS protection server.

The SDN controller controls all the flow monitoring process.
It deploys monitors to some free VMs. Then, it assigns each
flow to a monitor and the monitor analyzes the packets in
the flow to detect whether it belongs to an attacker or not.
There are many methods, including [8, 9], to classify whether
packets in a flow belong to an attacker or not, discussed in
Section II. If the flow belongs to an attacker then the monitor
notifies the controller. The controller creates a firewall rule in
the originating VM’s hypervisor to block the flow. Assigning
a flow to a monitor happens in two steps. In the first step,
the SDN switch on the flow path closest to the monitor is
selected. In the second step, an SDN or hypervisor rule is
created to copy the packets and forward them to the monitor.
Let us assume that the flow fjv (flow from VM j to v) is
assigned to the monitor installed in VM c. The packets of flow
fjv can be copied and forwarded to c from any of the SDN
switches in {SDN2, SDN5, SDN3}. SDN3 is closest to c.
Therefore, the controller selects SDN3, copies, and forwards
the packets to c. The reason for selecting the closest SDN
switch is that it increases the minimum network overhead for
copying a flow. We also consider the limited capability of
monitors. We assume that each monitor can handle a limited
number of flows. Though in reailty, capability of each VM
can be different. For simplicity, we assume that all VMs
are homogeneous with the same capabilities. Besides, we
can easily extend the solution for homogeneous VMs to the
solution for heterogeneous VMs.

When the number of required monitors for all the flows
is less than the budget, the controller creates rules to proba-
bilistically copy a certain portion of each flow from the SDN
switch. For example, assume there are 2 available VMs for
monitors and each monitor can handle a flow. If the number
of flows is 4, then each of the monitors needs to handle 2
flows. Therefore, the SDN switches copy 50% of the packets
of each flow and forward them to the monitors. The copy of the
original packets creates extra network overhead. We measure
the increased network overhead by multiplying the total data
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rate by the number of hops the flow copy travels. Let fab ∈ F
be a flow between VM a and b. rab is the data rate of flow
fab. V is the set of free VMs and A : F → V is the monitor
assignment. The network overhead for assignment A is C(A).

C(A) =
∑

fab∈F

rab × min
p∈a→b

dist(p,A(fab)) (1)

Here, a → b is an ordered set of SDN switches on the
path from a to b, including the physical machines of a and
b. dist(p,A(fab)) is the number of hops from SDN switch p
to the monitor A(fab). For example, if the data rate of the
flow fjv is 1 (Mbps) and it is assigned to monitor c, then
the increased network overhead for monitoring the flow is
1 × 1 = 1. If the flow fjv is assigned to monitor b, then
there is no network overhead. This is because, the hypervisor
can copy the flow to the monitor from the source VM of
flow fjv. So, the copied packets do not travel any links. The
increased network overhead can be a reason to degrade QoS
of the datacenter. Therefore, our main goal is to minimize
the increased network overhead. To minimize the network
overhead, we need to select the best subset of the free VMs
for the monitor placement and find the best flow assignment.
The flows in a datacenter is not static. Therefore, the controller
needs to re-calculate flow assignments periodically.

B. Attack Model

We assume all the attackers are internal attackers and
controlled by a master. The master may not reside inside
the datacenter. It is capable of finding the actual IP (public
or private) address of the victim. When the master sends
commands telling the attackers the victim’s IP address, they
start sending attack packets. The victim becomes overwhelmed
with the attack packets and DoS occurs. For example, in Fig.
2, VMs j, k, and n are the attackers.

IV. FLOW ASSIGNMENT

In this section, we formulate the problem to find an optimal
flow assignment to the monitors. We consider that the cloud
provider allocates some VMs for monitor deployment. The
number of VMs, location, and type of VMs are decided based
on affordability and the business strategy of the cloud provider.
For example, the cloud provider may not want to allocate VMs
in a PM, which is highly demanded by customers.

A. Problem 1: Find a flow assignment so that the network
overhead is the minimum by ensuring coverage of all internal
flows.

Let fab ∈ F be the flow between VMa and VMb (VMa ∈
V and VMb ∈ V ). The data rate of the flow fab is rab. There
are M (|F | = M) number of flows and N (|V | = N) number
of free VMs. The cloud provider can afford VMs in V ′ (|V ′| =
K) from some predefined locations. Therefore, each VM needs
to monitor M/K flows. We need to find a flow assignment
A : F → V ′ for which the increased network overhead is
minimum. The problem can be expressed as the following:
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Fig. 3: Problem I example.

Algorithm 1 Flow Assignment
Input: The topology G, set of flows F , and set of VMs V ′.
Output: A flow assignment.
1: Procedure: FLOW-ASSIGNMENT(G,F, V ′)
2: G′ ← CREATE-BIPARTITE (G,F, V ′)
3: G′′ ← CREATE-FLOW-GRAPH (G′)
4: A← find assignment using max-flow min-cost in G′′.
5: return A.

minimize
∑

fab∈F
rab × min

p∈a→b
dist(p,A(fab))

subject to ∀v∈V |{f : f ∈ F and A(f) = v}|
(2)

Here, p is the node on the path a→ b and dist(p,A(f)) is
the number of hops from the node p to the VM that monitors
the flow fab. The location of K VMs are predetermined.
Therefore, we only need to find an optimal assignment be-
tween the flows and free VMs. Usually, datacenters use regular
switches with SDN switches which are not programmable and
cannot copy packets. If a flow does not go through any SDN
switches, then the hypervisor of source or destination is the
only way of copying the flow. For simplicity, we consider all
the switches in our model to be SDN switches.

B. An Optimal Flow Assignment Scheme

The assignment process consists of two steps. In the first
step, we construct a bipartite graph G′ = (V1, V2, E), where
V1 is the set of flows (|V1| = M) and V2 is the set of parts
of VMs. Each VM is split into VM1, V M2, ..., V MB parts so
that each part can handle one flow (|V2| = B×K). From each
flow, edges are added to all parts. The weight of the edge is
the increased network overhead. So, G′ is a complete bipartite
graph (KM,BK).

In the second step, we find a minimum cost perfect match-
ing. We can easily reduce the problem to a minimum cost flow
problem. A flow graph G′′ = (V ′′, E′′) is created from G′

(V ′′ = V1 ∪ V2 and E′′ = E). A source and a destination are
added to V ′′. Then, edges from the source to all of V1 and the
destination to all of V2 are added to E′′. The capacity of each
edge/link is 1 and the cost of flow is the weight of each edge.
Newly added edges will have zero cost. The max-flow min-
cost paths in G′′ produce a minimum cost perfect matching
in G′. We can find max-flow min-cost paths using any of the
algorithms in [18]. The complete algorithm is shown in Alg. 1.
Procedures CREATE-BIPARTITE and CREATE-FLOW-GRAPH
are not shown in details to save space.

Let us consider the simple topology in Fig. 3(a). There are
seven SDN switches, each connected to a PM. Each PM can
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host two VMs. There are four flows fab, fac, fce, and feg .
The data rates of these flows are rab = 3, rac = 2, rce = 2,
and reg = 1. There are three free VMs {d, f, h}. The cloud
provider can only afford d and h. We want to find a mapping
from the four flows to two VMs. Therefore, each VM will
handle two flows.

According to the first step, we create a bipartite graph G′ =
(V1, V2, E) where V1 = {fab, fac, fce, feg}. We split d into d1,
d2 and h into h1, h2. So, V2 = {d1, d2, h1, h2}. Then we add
edges between all pairs of nodes from V1 and V2. The weight
of each edge is the increased network overhead for monitoring
it. For example, the weight of the edge between fab and h1

is 12. If we want to monitor fab in d, then the hypervisor
needs to copy the flow and the flow travels 4→ 2→ 5→ d,
which is four hops. Therefore, the increased network overhead
is 4× 3 = 12. Similarly, the weight of the edge between fab
and h2 is also 12. If we want to monitor fac in d, then the
hypervisor of d and c can copy the flow to d and there is
no additional network overhead. Therefore, the weight of the
edge between fac and d1 (or d2) is 0.

According to the second step, we create the flow graph
G′′ = (V ′′, E′′). We add S and D to G′′ (V ′′ = V1 ∪
V2 ∪ {S,D}). After adding all edges in E, edges from S
to each node in V1 and each node in V2 to D are created and
added to E′′. Weights of newly created edges are zero. We
assign the capacity of every edge to one. Fig. 3(c) shows the
flow graph. Then we use one of the maximum flow minimum
cost algorithms [18] to find a perfect matching between V1

and V2. Fig. 3(d) shows the perfect matching (A). Therefore,
fab and fac will be monitored in VM d, and fce and feg
will be monitored in VM h. The total network overhead for
monitoring these four flows is 12+4=16.

Theorem 1. The complexity of Alg. 1 is O(M3 + S3).

Proof. In step 2 of Alg. 1, creating a bipartite graph takes
O(M2) if we pre-compute all pairs’ shortest path distances.
Computation of all pairs’ shortest path distances takes O(S3),
where S is the number of SDN switches. Then, in step 3,
creating the flow graph takes O(M). In step 4, finding the
assignments using the cheapest augmenting path algorithm
takes O(M3+M2log(M)) time, which is O(M3). Therefore,
the complexity of the Alg. 1 is O(M3 + S3).

Theorem 2. The Alg. 1 returns optimal flow assignment.

Proof. The capacity of all edges in E′′ is 1. Therefore, for any
assignment, the maximum flow is M . To ensure M amount
of flows between S and D, each node in V1 must have an
incoming flow of 1. Similarly, each node in V2 must have an
outgoing flow of 1. Therefore, no node in V1 is assigned to
multiple nodes in V2. Secondly, the minimum cost maximum
flow algorithms [18] return the minimum cost path in G′′.
Therefore, Alg. 1 returns the optimal flow assignment.

V. MONITOR PLACEMENT

In this section, we formulate a problem to find optimal
locations for the monitors among some free VMs. We con-
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Fig. 4: Problem II example.

Algorithm 2 Flow Assignment 2
Input: The topology G, set of flows F , and set of VMs V ′.
Output: A flow assignment
1: Procedure: FLOW-ASSIGNMENT-2(V,K)
2: Calculate M/K-lowest cost for each VM in V .
3: Select K lowest M/K-lowest cost VMs V ′ from V .
4: A← FLOW-ASSIGNMENT(G,F, V ′)
5: return A.

sider a limited budget on the number of VMs for allocating
monitors. The large number of running VMs in the datacenter
increases the energy consumption and cost. The cloud provider
may want to reserve some VMs for a sudden increase in
the customers’ demand. Therefore, a cloud provider wants to
deploy monitors on the limited number of VMs. At the same
time, the cloud provider wants to get maximum security from
the monitors and less network overhead.

A. Problem 2: Find locations for monitors and a flow assign-
ment so that the network overhead is the minimum by ensuring
coverage of all the internal flows.

In this problem, we assume that the locations of K VMs
for installing monitors are not predetermined. We need to find
a flow assignment A : F → V ′ and find V ′ (V ′ ⊂ V ) for
which the network overhead is minimum. The problem can
be expressed as the following:

minimize
∑

fab∈F
rab × min

p∈a→b
dist(p,A(fab))

subject to |V ′| = K,

∀v∈V ′ |{f : f ∈ F and A(f) = v}|

(3)

So, we need to find an optimal assignment of the flows to
the monitors for which the network overhead is the minimum.
The problem 2 is NP-hard. Its NP-hardness can be proved by
reducing it to the vertex cover problem [13].

B. Greedy Approximation: M/K-lowest cost approach

M/K is the number of flows to be monitored in a VM.
M/K-lowest cost of a VM is the lowest total network over-
head for assigning M/K flows to the VM. Inclusion of a
VM to the assignment set increases at least M/K-lowest cost.
Therefore, we select K VMs with the lowest M/K-lowest
cost. We denote the M/K-lowest cost of VM a by C ′a. The
complete algorithm is shown in Alg. 2. Next flows are assigned
to the selected VMs using Alg. 1.

Let us consider the example in Fig. 3(a). Here, M = 4 and
K = 2. We need to find the 2-lowest cost for each VM. The
costs for monitoring fab, fac, fce, and feg in VM d are 12, 0, 0,
and 4, respectively. The 2-lowest cost of VM d is 0. Similarly,
the 2-lowest costs of h and f are 4 and 0, respectively. The
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(a) Topology 1. (b) Topology 2. (c) Topology 3.

Fig. 5: Randomly generated topologies.
VMs with lowest 2-lowest costs are f and d. Therefore, {f, d}
is the set of selected K VMs. The cost matrix (CM), G′, G′′,
and A are shown in Fig. 4.

Next, we create a bipartite graph G′ = (V1, V2, E). The
V1 = {fab, fac, fce, feg} and V2 = {d1, d2, f1, f2}. Then, we
add edges between all pairs of nodes from V1 and V2, and
assign weights to all edges. Fig. 4(b) shows the bipartite graph.
Then, we create the flow graph G′′ = (V ′′, E) by adding S
and D to G′′. Fig. 4(c) shows the flow graph. Then, we use
one of the maximum flow minimum cost algorithms to find
a perfect matching between V1 and V2. Fig. 4(d) shows the
perfect matching. Therefore, fab and fac will be monitored in
VM d, and fce and feg will be monitored in VM f . Fig. 4(d)
shows the final flow assignment. The total network overhead
for monitoring these four flows is 12+0=12. The final flow
assignment is shown in Fig. 4(d).

Theorem 3. The complexity of Alg. 2 is O(M3 + S3).

Proof. In step 2, calculating the M/K -lowest cost takes
O(MN). In step 3, finding K lowest M/K-cost takes O(N).
Step 4 which is finding an assignment using Alg. 1 takes
O(M3+S3). So, the complexity of Alg. 1 is O(M3+S3).

Theorem 4. The M/K-lowest cost approach increases at
most 2R logS, where R is total bandwidth of the flows.

Proof. Let the optimal network overhead be denoted by C∗.
The cost approximated by the M/K-lowest cost approach is
C. The set V ′ (|V ′| = K) has the lowest M/K-lowest cost
among the V VMs. V ∗ is the optimal set of VMs. In the worst
case, V −V ′ and V −V ∗ are disjoint. Therefore, we can write

C∗ = C − 2 log (S)
∑

a∈V−V ′
Ra +

∑
b∈V−V ∗

C′b (4)

Here, Ra is the total incoming data rate to VM a and C ′b is
M/K-lowest cost of VM b. In the worst case,

∑
b∈V−V ∗ C

′
b is

zero. Therefore, we can write the following:
C∗ = C − 2 log (S)

∑
a∈V−V ′

Ra,

C∗ ≥ C − 2 log (S)
∑
a∈V

Ra, C ≤ C∗ + 2 log (S)R
(5)

So, C will be at most 2R log (S) more than the optimal cost.
In tree topology, 2 log (S) is the diameter. Therefore, for any
kind of topology the increased network overhead will be at
most R× diameter more than the optimal.

TABLE I: Topology Parameters

Number of Topology 1 Topology 2 Topology 3
Nodes 172 249 277
VMs 84 150 184
PMs 42 52 44

SDN switches 46 47 49
Links 304 392 427

PMs in an SDN switch {1} {1, 2} {1, 2}
VMs in a PM {2} {2, 3, 4} {1, 2, 3, 4, 5, 6, 7}

Datarate [1,6] [1,6] [1,6]

TABLE II: Random tree topology settings

Number of Settings 1 Settings 2 Settings 3
Max degree 3 5 8

PMs in an SDN switch 3 3 3
VMs in a PM 5 5 5

VI. EXPERIMENTAL RESULTS

A. Experimental Settings
We conduct the experiments with a custom build java

simulator. The main reason for using a custom build for the
simulator is its scalability. We only need to count the increased
network overhead for monitoring all flows. The network
topologies we consider contain 200−300 SDN switches, PMs,
and VMs. Using NS3 or other similar simulators for this kind
of simulation would take several days. That is why we built our
own java multi-threaded simulator to get the results quickly.

We generate three random topologies for some experiments
(in Fig. 6). We consider a 500× 500 rectangular region. The
region is divided into 50× 50 blocks. In each block, an SDN
switch is placed by choosing a random location uniformly.
Links between two SDN switches are added if their distance
is less than 100 units. SDN switches in Topologies 1, 2, and
3 are generated with this setting. Then, PMs are attached to
each SDN switch with probability of 0.5. The number of PMs
attached to an SDN switch is 1 in Topology 1. The number
of PMs attached to an SDN switch is taken randomly from
{1, 2} in Topologies 2 and 3. Then VMs are added to each PM.
The number of VMs is taken randomly from {2}, {2, 3, 4},
and {1, 2, 3, 4, 5, 6, 7} in Topologies 1, 2, and 3. Node colors
red, blue, and green represent SDN switches, PMs, and VMs,
respectively. Detailed information is listed in Table I.

We conduct some experiments with tree datacenter topolo-
gies. In reality, many datacenters use the tree structure. We
generate random trees with three different settings. We first
generate the desired number of nodes and randomly pick a root
among the nodes. Then, a random node from the generated
nodes is picked up and added as a child to a random node
in the tree. Then, at each leaf node, PMs and VMs are added
similarly. We define three different settings for the random tree
generation. All settings allocate 3 PMs in each leaf node and
5 VMs in each PM. The maximum node degrees in Setting 1,
2, and 3 are 3, 5, and 8, respectively.

To generate flows, we consider two parameters: the number
of free VMs, and the number of flows. Firstly, the desired
number of VMs is excluded from the VM list. The refined
VMs are used as the source and destination of a flow. Then,
all possible pairs of VMs are generated. From the pairs of
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(a) Effect of the number of flows. (b) Effect of the number of free VMs.

(c) Effect of the number of nodes. (d) Effect of the number of flows.

(e) Effect of the number of free VMs. (f) Effect of the number of nodes.

Fig. 6: Simulation results.
VMs, the desired number of pairs are chosen randomly and a
flow is created between the VMs in each pair. The data rate
of each flow is chosen randomly from the range [1, 6].

We record the increased network overhead for 100 samples
and plot the average values. Since the solution for problem
1 is optimal, we compare the network overhead for different
settings by varying different parameters. For the second prob-
lem, we compare the optimal, M/K-lowest cost, and greedy
approachs’ network overhead. To find the optimal solution, we
needed to check all combination of free VMs. Therefore, we
pick a small number for free VMs and budget, then observe the
effect of changing multiple parameters. The greedy approach is
mainly introduced in [13] for intra-district flow assignments in
a datacenter. We consider a slightly modified greedy approach
compared with the original. For each flow, we pick the best
VM and add it to the selected VMs list. We keep adding VMs
to the selected VMs list unless the budget is met. When the
number of selected VMs is equal to the budget, the new flow
selects the best VM among the selected VMs. When a VM’s
capacity becomes full, we do not consider the VM for the next
flow. Thus, we assign VMs for each flow and the selected VMs
are used for monitor placement.

B. Simulation Results

We compare the increased network overhead of three
topologies. In Topology 1, we observe a small number of
PMs. Topologies 2 and 3 have a higher number of PMs than
Topology 1. The number of VMs in Topology 3 is the highest,

Topology 1 is lowest, and Topology 2 is in between. Therefore,
it is expected that Topology 1 has a higher network overhead.
Though Topology 2 has a higher number of PMs, it does not
help to reduce overhead. This is because VMs in the same
PM do not increase network overhead between them, but VMs
under the same SDN switch increase network overhead.

Fig. 6(a) shows the average network overhead and the
standard deviation for different number of flows. We vary the
number of flows from 1 to 500. We keep the minimum number
of free VMs as 20 for all topologies. When the numbers
of flows are small, the number of free VMs is higher than
20. In Topology 1, if the number of flows is less than 32
((84− 20)/2)), there might be more than 20 free VMs. If the
number of flows is greater than 32, it does not guarantee that
the number of VMs is 20. The higher the number of flows, the
higher the probability of having exactly 20 free VMs. When
the number of flows is 500, the increased network overheads
for Topologies 1, 2, and 3 are 2, 772, 2, 617, and 2, 385. The
standard deviation of the network overhead for Topologies 1,
2, and 3 are 302, 310, and 372, respectively.

Fig. 6(b) shows the average network overhead and standard
deviation for different numbers of free VMs. We vary the
number of free VMs from 1 to 50. We keep the number
of flows as 500 for all topologies. When the number of free
VMs is smaller, the network overhead of different topologies
is higher. This is because in Topology 1, there are a small
number of VMs and less flexibility of placing the monitors. As
a result, the network overhead is higher. The network overhead
decreases with the number of free VMs.When the number of
free VMs is higher the difference of the network overhead is
smaller. The standard deviation of network overhead is also
decreased by the number of free VMs. When the number of
free VMs is 1, the network overhead for Topologies 1, 2, and
3 are 1646, 785, and 414, respectively. When the number of
free VMs is 50, the network overhead for Topologies 1, 2, and
3 are 295, 248, and 128, respectively.

Fig. 6(c) shows the average overhead and the standard
deviation for different numbers of SDN switches. We vary
the number of SDN switches from 10 to 100. We use the
random tree generation algorithm, as discussed in experimental
settings. We record the network overhead for 100 randomly
generated trees with 500 flows. The settings 1 trees are
supposed to have a greater height than settings 2 or 3 trees. So,
the network overhead is supposed to be higher in topologies
with smaller node degrees. The maximum number of flows is
set to 500 for all settings. We keep the number of free VMs
equal to 50% of the number of SDN switches. We observe that
there is no significant difference in network overhead when the
number of SDN switches ranges from 10 to 30. This is because
the maximum allowable flows almost saturate the network.
When the number of SDN switches is greater than 30, we
see that settings 1 topologies have a higher network overhead
than settings 2 and 3. A datacenter with moderate flows and
a higher node degree helps to reduce network overhead. We
also observe that the overhead is increasing by the number of
SDN switches till 30. This is because the maximum possible
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flows do not cross 500 in the topologies. When the number
of SDN switches increases, the number of VMs and the
maximum possible flows also increase. When the number of
SDN switches is more than 30, the number of flows in the
network remains constant (500). The higher the number of
SDN switches, the higher the number of VMs, free VMs, and
flexibility. As a result, the network overhead decreases with
the number of SDN switches.

We compare the performances of the optimal (brute force),
greedy, and M/K-lowest cost (MKLC) approaches by varying
different parameters. Fig. 6(d) shows the average network
overhead of optimal, greedy, and MKLC for different numbers
of flows. We varied the number of flows from 250 to 500. We
keep the number of SDN switches to be 100. We choose the
range because they neither saturate the network, nor are very
small for the network. We use the settings 3 and the number of
flows as 500 for all topologies. We keep the budget constant
(9 VMs) to see the performance of three approaches and their
effect on the number of flows. The overhead for greedy is
higher than MKLC. On average, the network overhead is
3, 366, 2, 913, and 2, 279 for greedy, MKLC, and optimal
approaches, respectively. The MKLC increases the network
overhead by 27% while the greedy increases overhead by 48%
more than the optimal network overhead.

Fig. 6(e) shows the average network overhead of the three
approaches for different numbers of free VMs flows. We
vary the number of free VMs from 1 to 10. We keep the
same settings as the previous experiment for the topology
generation. We set the budget to be 50% of the number of
free VMs. When there is a free VM, all approaches will
assign all flows to that VM. Therefore, all approaches have
the same network overhead. When the number of free VMs is
2, the greedy approach is more likely to not choose the best
VMs for placing monitors than the MKLC approach. A higher
number of free VMs gives more options and a higher location
flexibility. As a result, the network overhead decreases by the
number of VMs. We observe that the MKLC always performs
better than the greedy approach. On average, the network
overhead is 4, 049, 3, 607, and 2, 507 for greedy, MKLC, and
optimal approaches, respectively.

Fig. 6(f) shows the average network overhead of the three
approaches for different budgets. We vary the budget from 1
to 6. We keep the number of SDN switches as 20. We use
the setting 3 and number of flows as 100 for all topologies. It
is clearly observed that the overhead decreases by the budget.
The network overhead in MKLC approach is closer to the
optimal than the greedy approach. On average, the network
overheads are 470, 336, and 291, respectively. Therefore, we
can conclude from the above experiments that, the MKLC
approach produces less overhead than the greedy approach.

VII. CONCLUSION

The internal DDoS attack is less common than the regular
DDoS attack, and is also harder to detect and protect against.
SDN switches can be utilized to monitor internal network
flows. Besides, the regular SDN switches can be used to copy

network packets to monitor by developing a custom action
plugin. The OpenFlow framework supports custom plugins,
which can be used for probabilistic packet forwarding. In this
work, we present two problems for assigning flows to monitors
and selecting the best locations for the monitors. We compare
the performances of the proposed placement policy with an
existing greedy approach. Simulation results show that our
proposed approach works better than the greedy approach.
In the future, we may analyze the performance of detection
methods for different probabilities of packet copying.
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