
Filter Assignment Policy Against Distributed
Denial-of-Service Attack

Rajorshi Biswas and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA

{rajorshi, jiewu}@temple.edu

Abstract—A denial-of-service (DoS) attack is a cyber-attack
in which the attacker sends out a huge number of requests
to exhaust the capacity of a server, so that it can no longer
serve incoming requests and DoS occurs. The most devastating
distributed DoS attack is performed by malicious programs
called bots. With the help of a special type of router called
filter router, the victim can protect itself and reduce useless
congestion in the network. A server can send out filters to filter
routers for blocking attack traffic. The victim needs to select
a subset of filter routers wisely to minimize attack traffic and
blockage of legitimate users (LUs). In this paper, we formulate
two problems for selecting filter routers given a constraint on
the number of filters. The first problem considers the source-
based filter and we provide greedy approximation solutions.
The second problem considers the destination-based filter and
how to minimize total amount of attack traffic and blocked
LUs. We propose a dynamic programming solution for the
second problem. We present simulation results comparing the
proposed solutions with a naive approach. Our simulation results
strengthen support for our solutions.

Index Terms—botnet, DDoS defense, DDoS, flooding attack,
filter router, network security

I. INTRODUCTION

A denial-of-service attack (DoS attack) is a cyber-attack

in which the attacker seeks to make a machine or network

resource unavailable temporarily to its users. DoS attacks are

considered a federal crime under the Computer Fraud and

Abuse Act with penalties that include years of imprisonment

[1]. The Computer Crime and Intellectual Property Section of

the US Department of Justice handles cases of DoS attacks.

Therefore, detecting DoS attacks and identifying attackers

have been an important issue in Network Forensics. Moreover,

DoS attacks are increasing day by day in both number and

size; CloudFlare [2] recently reported a 400 Gbps massive

DoS attack that took place at their servers.

There are several types of DoS attacks including SYN

Floods, Malformed Packets, UDP Floods, Amplification At-

tacks, and Distributed Attacks [3]. The objective of DDoS is

to generate a lot of packets from different locations to exhaust

incoming/outgoing bandwidth of the victim. A coordinator

would send commands to workers who continue to send

requests to the target. The workers are known as bots and

the network of workers is known as botnet. As normal users

also request through the NAT, it is difficult for the victim

to differentiate between the bot requests and normal user

requests. Fig. 1 shows the DDoS attack model by botnet. An

effective method of preventing DDoS attack is to use filter

routers (FRs) in network infrastructure. FRs are a special type

of router which is capable of packet marking and receiving

NAT NAT NAT

Internet

Web Server
(Victim)

Coordinator

FR1

FR4

v

1 1

FR3

FR5

FR2

1

Victim

12

Internet

Fig. 1. DDoS attack by bots.

filter tasks. Packet marking task refers to attaching the FR’s

own IP address probabilistically to the packets it forwards

while receiving filter task refers to receiving filters from a web

server. A web server can block all or part of the traffic destined

to it. The packet marking is used to find the topology by the

victim. After topology construction, the victim generates filters

and selects a subset of the FRs to assign them.

In this paper, we focus on finding optimal filter assignment

assuming that the victim has already constructed the traffic

topology. We formulate two problems and propose solutions

for them. In the first problem, a limited number of source-

based filters are assigned to the FRs. For example, if the victim

can assign 2 filters, it can select {FR1, FR2}, {FR1, FR5},

{FR2, FR4} or another pair of FRs (see Fig. 1). If the

victim selects the first pair of FRs, the attack traffic from

FR3 will reach the victim which is highly unexpected. If

the second pair is selected then the attack traffic will travel

through (FR2, FR4), (FR3, FR4), and (FR4, FR5) links.

The amount of attack traffic in each link is not same. It is

challenging to find a filter assignment for which the total

amount of attack traffic is minimum. We propose greedy ap-

proximation solutions for this problem. In the second problem,

a limited number of destination-based filters are assigned to the

FRs. Destination-based filter blocks every packet at FR that is

destined to the victim. If the victim selects the third pair, then

all the legitimate users (LUs) will be blocked and the attack

traffic will travel through (FR2, FR4) and (FR3, FR4) links.

It is also challenging to find a filter assignment so that the

total attack traffic and number of blocked LU are minimum.

We propose a dynamic programming solution for this problem.

Our main contributions are the following:

1) We formulate two problems for finding filter assignment

with a budget (limited number of filters) and provide

greedy and dynamic programming solutions.

2) We present simulation results to support our model.

The remainder of this paper is arranged as follows: Section

II presents some related works and their limitations. In Section

III, we present the system model for preventing DDoS attack.

537

2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS)

978-1-5386-7308-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ICPADS.2018.00076

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

Section IV presents the formal definition of the first problem

and our proposed greedy solutions. Section V presents the

formal definition of the second problem and our proposed

dynamic programming solution. In Section VI, we present

some simulation results that strengthen our proposed solutions.

II. RELATED WORKS

There exist many statistical methods including correlation,

entropy, covariance, divergence, cross-correlation, and infor-

mation gain to detect anomalous DDoS requests [4]. Authors

in [5] introduced a model of randomized DDoS attacks with

increasing emulation dictionary where the attackers use the

attack definition from the dictionary that contains request

patterns similar to those of LUs. They proposed an inference

algorithm for identifying the botnets executing such DDoS

attacks. Nowadays, static path identifiers are used for inter-

domain routing objects, which makes it easy for attackers to

launch the DDoS flooding attacks. In [6], the authors present

a design dynamic path identification framework that uses path

identifier negotiated between the neighboring domains as inter-

domain routing objects.

In [7], the authors propose a method, RADAR, to detect and

throttle DDoS attacks using adaptive correlation analysis on

SDN switches. The system can defend against a wide range

of flooding-based DDoS attacks including link flooding, SYN

flooding, and UDP-based amplification attacks. In [8], the

authors propose a new approach which reduces the resource

utilization factor to a minimal value for quick absorption of

the attack. In [9], a DDoS protection mechanism, SkyShield,

is proposed by taking advantages of the sketch techniques.

To identify malicious hosts efficiently, they used the abnormal

sketch obtained from the last detection cycle. The SkyShield

could leverage other techniques including Bloom filters and the

CAPTCHA. In [10], the authors propose a collaborative DDoS

mitigation network system in which a domain helps another

domain. A domain can direct excessive traffic to other trusted

external domains for DDoS filtering. The filtered clean traffic

is forwarded back to the targeted domain.

Most of the existing works are mainly concerned about the

service availability of the server. In fact, the attack traffic may

cause huge network congestion and DoS. Therefore, these

techniques cannot protect the network from being contam-

inated by attack traffic. A victim and network component

collaboration based system can help in this case. A four-

phase DDoS protection system is proposed in [11]. The victim

generates filters and sends them to the upstream FRs. The

FRs send the filters to its upstream FRs and thus the filters

propagate to the effective FRs. An adaptive version of PFS

is proposed in [12]. The system sends directly filters to

the high capable FRs first, then the filters propagate to the

effective FRs. However, these two systems cannot select the

FRs optimally when there is a limitation on selecting FRs.

III. SYSTEM MODEL

Our system is composed of legacy routers (LRs), network

address translators (NATs), filter routers (FRs), attackers,

LR2

V

NAT
NAT

NAT

NAT

FR3 FR4

LR1

FR2

FR1

FR1

FR3

v

2

3
FR2

2

FR4

Fig. 2. System model and constructed topology.

legitimate users (LUs), and a victim (v). Fig. 2 shows the

complete system model. In reality, there are multiple victims in

a network but for simplicity of explanation we are considering

a single victim. We assume that end users are connected to

a FR or a LR through NAT. The FRs are a special kind of

router which are capable of two functionalities. Firstly, it can

do packet marking which is used to construct traffic topology

at the victim. Secondly, it can receive filter from the victim

and apply the filter to block the attack traffic according to

the filter definition. There can be two types of filter: source-

based and destination-based. The source-based filter specifies

blocking of traffic based on source address. For example, a

source-based filter can be understood: if source address is X
then discard the packet. If we use a source-based filter at FR3

(assume X and Y are the IP addresses of the NATs connected

to FR1 and FR2, respectively) then FR3 will discard packets

coming from NAT-X but forward packets from the NAT-Y.

The advantage of using source-based filter is that a FR can

block the attack traffic by its source IP address and forward

legitimate traffic. If the LU and attacker both remain behind

the same NAT, then it is impossible to block only attack

traffic. The limitation of the source-based filter is that it cannot

protect if an attacker spoofs the IP address of a LU. If an

attacker creates packet having Y as the source address, then the

packet will not be blocked at FR3. To protect against DDoS

attack with IP spoofing, we can use destination-based filter.

A destination-based filter is if the destination address is X
then discard the packet. For example, if we use a destination-

based filter at FR3 (assume that X is IP address of v), then

all the packets including legitimate and spoofed attack packets

will be blocked by FR3. The destination-based filter is more

restrictive. When a FR uses it, it blocks all the attack and

legitimate traffic destined for the victim. Therefore, spoofed

attack traffic cannot penetrate.

The attackers are usually user devices which have compro-

mised programs that can generate traffic destined for a target.

The programs are controlled by a master. The master can send

commands of attack to the program. This type of program is

called bot and the network of bots is called botnet. Though

the DDoS traffic is hard to differentiate from legitimate traffic,

there exist several methods based on arrival time, packet size,

and packet content for detecting attack packets [4]. In this

paper, we are not focusing on the detection of attack packet

and assume that the victim can find out the source address of

attack traffic using these methods. The victim also knows the

packet rate of each attacker. The complete protection process

consists of the four phases.

538

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

In phase 1, the FRs probabilistically mark the packet

it forwards by appending its own IP address. Assume the

marking probability is 0.5. Then the victim v may get packets

with {FR1, FR3}, {FR3, FR4}, or {FR1, FR4}. The victim

may also get packets with {FR2, FR3}, {FR3, FR4}, or

{FR2, FR4}. The {FR1, FR3} marking indicates that the

FR1 remains before the FR3 along the path from the user.

In phase 2, the victim constructs paths from all the sources

after gathering enough information from marked packets.The

victim can easily form a directly acyclic graph (DAG) combin-

ing all the paths. For simplicity we will consider tree instead

of a DAG. We consider that bots and LUs are behind NAT of

internet service provider. We color the bots/attacker as black

and LUs as white. The FRs which forward the end users’

traffic first are called entry nodes. {FR1, FR2} are the entry

nodes in Fig. 2. The FRs are colored as black, white, or gray.

A black (or white) FR means it only forwards messages from

attacker/bot (or LU). A gray FR forwards packets from both

LU and attacker.

In phase 3, some of the FRs in the traffic topology are

selected to assign filters. The traffic topology is simplified

by removing nodes with no fork. A node having at least

two children is called a fork node. Non-fork nodes are not

efficient for assigning filters. Instead, selecting child node

reduces attack traffic in the network. Therefore, an optimal

filter assignment policy should select a set of FRs (g) from

the set of gray and black nodes (G) with minimal blockage

of legitimate traffic and contamination by attack traffic, while

ensuring that no attack traffic can reach the victim. We define

the contamination as the total attack traffic in the network.

For example, if the attack traffic is blocked at FR3 then total

contamination is 2 (assume all attackers’ packet rate is 1).

We denote the contamination in a network for the g filter

assignment set by Wc.

Wc(g) =
A∑

a=1

αa × da, da = min
∀n∈PRED(n)∩g

dist(a, n) (1)

Here, PRED(n) is the set of predecessor of n, αa is the traffic

load of attacker a, dist(a, n) is the number of hops between

a and n. A is the total number of attackers. Therefore, Wc

is the total attack traffic load for selecting |g| FRs out of |G|
FRs. If U is the set of LUs, then the number of blocked LUs

for the filter assignment g is denoted by Ub(g).

Ub(g) = {u : u ∈ U and PRED(u) ∩ g �= ∅} (2)

The best way to minimize blockage of LU and contamina-

tion is to block immediately after the attacker. In reality, there

are a huge number of attackers and the victim needs to select a

huge number of FRs to block them which is not possible. So, a

victim has budget B of selecting a number of FRs. Therefore,

|g| should be less than or equal to B.

In phase 4, unused filters are removed from the FRs. As

the FRs have limited capacity and computation power, it is

necessary to reduce the workload by removing the filters.

Besides, the attacker can flood the FRs by sending useless

filters. This type of filters are evicted soon because they are

most likely not being used.

The filter sent by a user (or victim) is only applicable to the

packets which are destined for that user (or victim). However,

an attacker can spoof IP of the victim and send wrong filters

to FRs. This spoofed filter can be detected using a simple

handshake protocol. The spoofing attacker will not be able to

handshake with the spoofed IP address. However, we are not

focusing on finding an optimal filter assignment policy which

is discussed in the next section.

IV. SOURCE-BASED FILTER ASSIGNMENT POLICY

In this section, we formulate a problem of assigning source-

based filters to the FRs so that the contamination is minimum.

A. Problem 1: Find a filter assignment so that the contamina-
tion is minimal by ensuring that all the attack traffic is blocked
before reaching the victim.

In this problem, source-based filters are used. The contam-

ination is defined by the total amount of attack traffic in the

network. The problem can be expressed as the following:

minimize Wc(g)

subject to |g| ≤ B, ∀g ⊂ G, v /∈ G
(3)

The victim v will be white (v /∈ G) if all attacker traffic is

blocked before reaching it. The complexity of optimal solution

is unknown. Therefore, we propose and compare two greedy

approximation solutions as follows.

B. First Greedy Solution

A filter is first assigned to root to guarantee the blockage

of all attack traffic. The rest of the filters are assigned using a

greedy approach. We first calculate weight of each node. The

weight of a node is its attack flow times the distance from the

node to the root, or the closest node having filter on the path

to the root. Then the highest weighed node is selected for filter

assignment and weight is updated accordingly. After every new

assignment we need to check for each node in assignment

set whether attack flows from all children are blocked by

other filters or not. If all attack flows are blocked, then we

remove the filter from the node. The process continues until

the number of filters is less than the budget.

Let us consider the tree in Fig. 3(a) that is constructed from

information from marked packet by the victim. Assume we

want to find assignment of 3 filters (B = 3). We first assign a

filter to 7. The weights of nodes 1, 2, 5, and 8 are 4× 2 = 8,

15× 2 = 30, (15 + 4)× 1 = 19, and 3× 2 = 6, respectively.

So, node 2 is taken for assignment. Now new weight of 2 is 0
and new weight of 5 will be 4×1 = 4. None of {7, 2} nodes’

incoming attack traffic is blocked. Therefore, none of the nodes

are removed from assignment. The next highest weight is of

node 4. Therefore, the filter assignment is {7, 2, 4}. The Wc

of this assignment is 8 while the optimal Wc is 0 for B = 3.

For randomly generated trees, filter assignment produced by

this greedy approximation is almost twice as much as than the

optimal filter assignment. Details are shown in Section VI.

539

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

5

1

7

2

1 2

v

4
15

19

3
0

4 15 3

4

User
Attacker
Router

3

6

6

3
Remove 610

No Fork

5

1

7

2

1 2

v

4 15

19
6

0

4 15 3

43

6

10

B=2

(a) Topology for Problem 1.

7 5 4

7 7 7

5 5

4 4

3

2

1

ji 3 2 1

7

 5 5

7

3 5

2

LCA

7

7

5

4

3

2

1

ji
0

1

2

2

2

2
dist

7

5

7

5

5

5

7

 7

77

(b) LCA calculation.

6

1

8

2

1 2

v

4 15

3

10 7

4 5

1 23 2

7

6

(c) Topology for Problem 2.

Fig. 3. Topologies for problems 1 and 2.

Algorithm 1 Second Greedy Blocking Strategy

Input: The number of filters B, topology tree T
Output: A set of nodes in T
1: Procedure: BLOCK-GREEDY-2(B, T)
2: Initialize LCA, dist, g and Bc ← |g|
3: min←∞, imin = 0, jmin = 0, A← NULL
4: while Bc �= B do
5: for i = 1 to Bc do
6: for j = i to Bc do
7: A← LCA[g[i], g[j]]
8: if min ≤ P(i, j) then
9: min← P(i, j), imin ← i, jmin ← j

10: g ← (g − {imin, jmin}) ∪A
11: Increase BAT of A by BAT of imin and jmin.
12: Bc ← Bc − 1

13: return g

14: Procedure: P(i, j)
15: return N[i].BAT ×(dist[i, N]−dist[N,LCA[i, j]])+N[j].BAT ×

(dist[j,N]− dist[N,LCA[i, j]])

Theorem 1. The complexity of the First Greedy Blocking
Strategy is O(NB).

Proof. If there are N nodes and B is the budget, then the

algorithm would add a node to assignment set for B−1 times.

After each iteration, it takes O(N) time to update weight.

Therefore, the complexity of the strategy is O(NB). In the

worst case B = N and the complexity is O(N2).

C. Second Greedy Solution

We start with the maximum number of filters needed to

block attack traffic. In fact, we are assigning filters to all

non-white entry nodes initially. Then gradually the number

of filters and selected FRs will be reduced by one by merging

a couple of filters. The merged filter will be sent to the least

common ancestor (LCA) of the two FRs. Merging two filters

means simply adding the conditions by “or” relation. There

could be many options to merge two filters and merging will

be associated with penalty. When we are merging two filters

of two FRs and assigning the new filter to LCA of them,

we are yielding attack traffic to the LCA FR. The amount of

attack traffic we are yielding is the penalty associated with the

merge. We select a couple of FRs with lowest merging penalty.

Thus the number of selected FRs or filters is reduced by one.

The reduction process continues until it meets the budget. The

algorithm is shown in Alg. 1.

Let us consider the tree in Fig. 3(a). We use a double linked

tree data structure. Each node contains a pointer to its parent,

a number representing blocked attack traffic (BAT), an array

of pointer to children with distance, and the color of the node.

Initially the BAT of a “white” node is 0. The BAT of a “black”

entry node is the total attack traffic. The BAT of non-entry

nodes is 0. We keep an array N of pointers to the nodes to

quickly access a node by its label. N[i] is the node having

level i. Firstly, we need to simplify the tree. There is only one

node 6 without fork. We remove the node 6 and make 4 child

of its parent 7. The new distance to 4 from 7 will increase

by the distance of deleted link. The deletion of a node can

be done in constant time. Finding out all non-forked nodes

takes O(N) time. Therefore, the simplification can be done

in O(N) time. Next steps are taken according to the Alg.

1. Bc is the number of non-white entry nodes (Bc = 3). The

assignment set g = {1, 2, 4}. This step takes O(N) time to find

all the entry nodes. Then the all-pair LCA is computed. LCA

calculation can be represented as the following recurrence:

LCA[i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i, for i = j

LCA[i, p(j)], for LCA[i, p(j)] �= null

LCA[p(i), j], for LCA[p(i), j] �= null

LCA[p(i), p(j)], otherwise

(4)

Here p(i) represents the parent of node i which can be found in

constant time. The all pair LCA can be calculated in O(N2)
time if we use dynamic programming. We have LCA[i, j]
is calculated in a top-down fashion. Therefore, LCA[7, 7] is

calculated first and LCA[7, 7] = 7. After that LCA[7, 5] is

calculated. As P (5) = 7 so that LCA[7, 5] = 7. When we

calculate LCA[4, 3], we need to look at LCA[7, 3], LCA[5, 4],
or LCA[7, 5]. The LCA[7, 3] = 7 so LCA[4, 3] = 7.

Similarly, we calculate the rest of the pairs (see Fig. 3(b)).
Next we calculate distance (dist) of every node from the

root. This calculation takes O(N) as it needs to traverse the

whole tree once again. The complete dist[i, j] is shown in

Fig. 3(b). When Bc = 3 the filter assignment is {1, 2, 4}.

When Bc = 2, we have three options for merging filters: (1)

merge filters of 1 and 2 and assign the merged filter to FR 5
(P (1, 2) = 19), (2) merge filters of 1 and 4 and assign the

merged filter to FR 7 (P (1, 4) = 14), and (3) merge filters of

2 and 4 and assign the merged filter to FR 6 (P (2, 4) = 36).
Therefore, option (2) is chosen and the assignment is {2, 7}
for Bc = 2. When Bc = 1, we have one choice which is

to merge filters of 2 and 4 and assign the merged filter to 7
(P (2, 7) = 30). Therefore, for B = 1 the assignment is {7}.

Theorem 2. The complexity of the Second Greedy Blocking
Strategy is O(N2(N −B)).

Proof. The algorithm would iterate the step 5 loop for N −

540

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 DP Blocking Strategy

Input: The number of filters B, topology tree T .
Output: A set of nodes in T .

1: Procedure: BLOCK-DP(B, T)
2: N ← number of nodes in T
3: for i = 1 to N do
4: for j = 0 to B do
5: if i is an entry node then
6: Initialize A[i, j], L[i], C[i], and R[i, j, k]
7: else
8: L[i]←∑Δ

k=1 L[ck(i)]
9: min←=∞

10: if No attacker attached to i then
11: p← cost according to Equation 6
12: if min ≥ p then
13: min←∑Δ

k=1 A[ck(i), xk]
14: A[i, j]← min
15: ∀1≥k≥ΔR[i, j, k]← xk ,
16: R[i, j,Δ+ 1]← 1

17: for ∀x1, x2, ..., xk :
∑Δ

k=0 xk = j do
18: p←∑Δ

k=1 A[ck(i), xk]
19: if min ≥ p then
20: A[i, j]← p← min
21: ∀1≥k≥ΔR[i, j, k]← xk

22: R[i, j,Δ+ 1]← 0

23: return FIND-ASSIGNMENT(R, B)

B times. In each iteration, it takes O(N2) time to find out

the pair of nodes with minimum penalty. The all pair LCA

computation takes O(N2) time. The complexity of Alg. 1 is

O(N2(N − B)) + O(N2) = O(N2(N − B)). In the worst

case B = 1 and the complexity is O(N3). The complexity

can further be improved to O((N − B)2 logN) using min-

heap data structure (see Appendix A for details).

V. DESTINATION-BASED FILTER ASSIGNMENT POLICY

As we are using destination-based filters for protection

against spoofed DDoS attack, we are blocking some LUs. In

this section, we formulate another optimization problem of as-

signing destination-based filters to the FRs so that a weighted

sum of the contamination and blocked LUs is minimum.

A. Problem 2: Find a filter assignment so that the LU
blockage and contamination are minimal.

It is always better if the victim can select some FRs within

its budget which minimizes both the number of blocked LUs

and contamination. As discussed in Section III the source-

based filter cannot ensure protection against IP spoofing DDoS

attack. For example, if the attacker attached to node 1 uses IP

address of the users attached to node 3 (see Fig. 3(a)). The

filter used at node 1 or 5 would forward the packet. But if the

FRs use destination-based filter then no spoofed attack packet

can penetrate. Therefore, the victim would use the destination-

based filters. The problem can be expressed as the following

optimization problem:

minimize ωWc(g) + (1− ω)|Ub(g)|
subject to |g| ≤ B, ∀g ⊂ G, v /∈ G

(5)

Here ω = [0, 1] is considered a system parameter which

determines priority of total contamination and LU blockage.

Algorithm 3 Find Assignment

1: Procedure: FIND-ASSIGNMENT(R, B)
2: x.i← N, x.j ← B, g ← ∅, and Q← ∅.
3: ENQUEUE(Q,X).
4: while Q �= ∅ do
5: x← DEQUEUE(Q)
6: if R[x.i, x.j,Δ+ 1] �= 0 then
7: g ← the R[x.i, x.j,Δ+ 1] nodes according to case 1.
8: else
9: for k = 1 to Δ do

10: xc.i← ck(x.i), xc.j ← R[x.i, x.j, k]
11: ENQUEUE(Q, xc)

12: return g

B. A Dynamic Programming Solution
Let us consider an N node tree with maximum node degree

Δ. The nodes are labeled in bottom-up and left-right order. We

define A as a N × B array which contains optimal cost for

every node and budget. For example A[i, j] is optimal cost of

budget j on subtree rooted by node i.
We define L as a 1 ×N array which contains the number

of LUs in subtree rooted by every node. L[i] is the number

of LUs in subtree rooted by node i. We also define R as an

N ×B × (Δ + 1) array which contains the number of filters

assigned to node i and its subtrees for every node and budget.

For example, R[i, j, 1], R[i, j, 2], and R[i, j,Δ + 1] are the

number of filters to first subtree, second subtree, and node i
of subtree rooted by i for budget j. The optimal cost of using

j destination-based blocking/filter in subtree rooted by i is the

minimum of the following quantity:
Case I: The minimum total weighted cost, if we assign 1

filter to the node i and the rest of the filters to some nodes of

the subtree rooted by i. Therefore, the cost will be a weighted

sum of the minimum contamination and LU in subtree rooted

by i. The assignment of the j − 1 nodes can be done in a

greedy way. We can apply the Alg. 1 to find an assignment

in subtree rooted by i but the cost will no longer be optimal.

First, we assume an attacker attached to the i. This assumption

confines a filter to i. Then we find an assignment of budget

j using Alg. 1. As i will be assigned a filter, the other j − 1
filters will be assigned to the subtree rooted by i.

Let g′[i, j − 1] be the assignment which provides contam-

ination (C(g′[i, j − 1])) to the subtree rooted by i for j − 1
filters. Then the cost for this option will be:

A[i, j] = ωC(g′[i, j − 1]) + (i− ω)L[i] (6)

Case II: The minimum total weighted cost, if we divide the

number of filters into x1, x2, ..., xk parts and assign them to

the subtrees c1, c2, ..., ck, respectively. Therefore, the cost for

this option will be:

A[i, j] =

Δ∑

k=1

A[ck, xk] (7)

Therefore, we take the minimum quantity from the above

two options. If there are some attackers attached to node i,
we do not consider the option 2. This is because, if we assign

all the j filters to its subtree then the attack traffic from i will

reach the victim v, which is not allowed by the constraint of

the problem definition.

541

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

1.5 0,0,0,1 1,1,0,0

0 1 2
1 ∞ 0.5 0.5

2 ∞ 1 1
3 ∞ 0 0
4 ∞ 1 1
5 ∞ 2 2
6 ∞ 14 6.5

ji

A

0 1 2
1 0,0,0,0 0,0,0,1 0,0,0,2
2 0,0,0,0 0,0,0,1 0,0,0,2
3 0,0,0,0 0,0,0,1 0,0,0,2
4 0,0,0,0 0,0,0,1 0,0,0,2
5 0,0,0,0 0,0,0,1 0,0,0,2
6 0,0,0,0 0,0,0,1 0,0,0,2

ji

R

i
1 1
2 2
3 0
4 1
5 2
6 3

L

7 ∞ 7.5 1.5 7 0,0,0,0 7 10
8 ∞ 36.5 21.5 8 0,0,0,0 0,0,0,1 1,1,0,0 8 23

3
0,0,0,3
0,0,0,3
0,0,0,3
0,0,0,3
0,0,0,3
1,1,1,0

2,1,0,0
2,1,0,0

3
0.5

2
0
1
2

1.5

14

Fig. 4. A, R, L, and C.

Let us consider the traffic topology in Fig. 3(c) and ω = 0.5.

The leaf entry nodes are 1, 2, 3, 4, and 5. The calculations of

A, R, and L are straightforward. For example A[1, 0] = ∞,

A[1, 1] = 0.5 × 0 + 0.5 × 1 = 0.5, and A[1, 2] = 0.5 × 0 +
0.5 × 1 = 0.5. R[i, 1] = [0, 0, 0, 1], R[i, 2] = [0, 0, 0, 2], and

R[i, 3] = [0, 0, 0, 3]. For node 6 and j = 0, we have one choice

x1 = 0, x2 = 0, x3 = 0 and the cost is ∞. For j = 1, we have

two cases. Case 1: 1 for node 6, and x1 = 0, x2 = 0, x3 = 0.

The total cost is 0.5×25+0.5×3 = 14. Case 2: 0 for node 6,

and (1) x1 = 1, x2 = 0, x3 = 0, (2) x1 = 0, x2 = 1, x3 = 0,

or (3) x1 = 0, x2 = 0, x3 = 1. For option (1): total cost

is ∞ + ∞ + ∞ = ∞. For option (2) and (3) total cost is

also ∞. Therefore, case 1 is minimum (A[6, 1] = 14) and

R[6, 1] = [0, 0, 0, 1].
For j = 2, there are also two cases. Case 1: 1 for node 6

and 1 is for its subtrees. We assume an attacker attached to 6.

Then applying the Alg. 1 for B = 2, we find the assignment

is {6, 2}. After assigning the filters the total contamination is

4+6 = 10 The total cost in this option is 10(0.5)+3(1−0.5) =
6.5. Case 1: 0 for node 6, and 2 filters to subtrees of 6. This

case is valid for node 6 because there is no attacker directly

attached to it. There can be six options: (1) x1 = 2, x2 =
0, x3 = 0, (2) x1 = 0, x2 = 2, x3 = 0, (3) x1 = 0, x2 =
0, x3 = 2, (4) x1 = 0, x2 = 1, x3 = 1, (5) x1 = 1, x2 =
0, x3 = 1, and (6) x1 = 1, x2 = 1, x3 = 0. For option (1),

the total cost is A[1, 2] +A[2, 0] +A[3, 0] = 0.5 +∞+∞ =
∞. Similarly, the options (2) to (6) cost ∞. Therefore, case

1 is minimum and A[6, 2] = 6.5 and R[6, 2] = [0, 0, 0, 2].
Similarly, we calculate the rest of the entries in A and R. The

complete A, L and R are shown in Fig. 4.

According to the definition, A[8, 3] contains the cost for

budget B = 3 which is 14. From R we can find out which

FRs are blocked. R[8, 3, 1] = 2 and R[8, 3, 2] = 1 means 2 and

1 filters are assigned to its 1st and 2nd subtrees, respectively.

Then we need to look R[6, 2, k] and R[7, 1, k]. R[6, 2, 1] = 0,

R[6, 2, 2] = 0, R[6, 2, 3] = 0, and R[6, 2, 4] = 2 means no

filter is assigned to its subtrees and two filters are assigned to

itself. Therefore, we need to find the assignment according to

Case I. According to Case I {6, 2} is the assignment. Similarly,

we can find that a filter is assigned to node 7. So, the filter

assignment is {2, 6, 7} for budget B = 3 and the cost is 14.

Theorem 3. Complexity and space needed of the DP Blocking
Strategy are O(NBΔ−1) and O(NBΔ).

Proof. Let us consider the topology is a N node tree with

maximum node degree Δ and the victim has budget of B.

To find the partitions x1, x2, ..., xΔ we need O(B(Δ−1)) time

if we use naive nested iteration approach. Therefore, the

complexity of the Alg. 2 is O(NB(Δ−1)). The total space

needed is (N−1)B+(Δ+1)(N−1)B+(N−1) which is an

order of O(NBΔ). For a binary tree topology the complexity

is O(NB2) and the space complexity is O(NB).

Theorem 4. The Alg. 2 provides optimal solution when ω = 0.

Proof. When ω = 0 only blockage of LUs is taken into

account. The Alg. 2 uses a dynamic programming bottom-

up strategy to search the optimal assignment. For an one-node

tree, if the node color is “black” or “gray” then there is no

solution for B = 0. Because without any filter, the attack

traffic will be forwarded to the downstream routers. For B ≥ 1
there is only one choice of selecting FR which is that node.

If that node is selected, the optimal number of blocked LUs

is the LUs attached to it. In each step, the Alg. 2 chooses the

best allocation of filters to itself, left subtree, or right subtree.

Therefore, the Alg. 2 provides optimal filter assignment to the

FRs through exhaustive search.

VI. EXPERIMENTAL RESULTS

A. Experimental Setting

We conducted the experiments with a custom build java sim-

ulator. The main reason for using custom build for simulator

is its scalability. We do not need to analyze transmission time,

bandwidth, or packet drop issues. We only need to count the

number of legitimate (or attack) received (or blocked) packets.

The network topologies we considered contain 100 − 500
routers. Using NS3 or other similar simulator for this kind of

simulation would take several days. That is why we built our

own java multi-threaded simulator to get the results quickly.

We conducted simulation for randomly generated tree topol-

ogy and a subset from a real network topology. We used

two randomly generated topology having node degree between

[0− 4], internal node user probability between 1− 0.25, and

maximum depth 6. The entry nodes’ color and number of users

or attackers were selected randomly from a uniform distribu-

tion. The Topology I and II were randomly generated trees

with 66 and 247 nodes and max node degree 4. The Topology

III was taken from a subset of the Stanford University Note

Dame web graph [13]. The dataset contained 325, 729 nodes

and we took a subset (which is a tree) containing 403 nodes.

Then we randomly assigned users to the tree with internal user

probability 0.1. The details are shown in Table I and Fig 5(h).

We compare the performances of our proposed second

greedy blocking strategy (Greedy 2), DP blocking strategy

(DP) and a naive approach. In the naive approach, source-

based filters are used. At first, a filter is assigned to the node

which is attached to v. Then the filter is split to its child nodes

which have higher attack traffic flows. The split only occurs if

the node does not have any attacker attached to it. Therefore,

a split will increase the number of filters by its number of

children. Every round the node with highest attack traffic is

542

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

(a) Greedy vs. optimal. (b) Greedy 2 approach simulation. (c) DP approach simulation. (d) Naive approach simulation.

(e) Total cost of three solutions. (f) DP effect of ω. (g) Simulation with real topology.

Topology I Topology II

Topology III

(h) Traffic topologies.

Fig. 5. Simulation results.

TABLE I
TOPOLOGY PARAMETERS

Topology I Topology II Topology III
Number of nodes 66 247 403
Internal user probability 0.1 0.25 0.1
Attacker ratio 0.4 0.4 0.4
Max Node Degree 4 4 20
Data Rate(pack/ms) [0.1-0.4] [0.1-0.4] [0.03-0.13]

selected for split from the current assignment. The process

continues until the number of assigned filters is less than

budget. We show the contamination (C), number of blocked

attack packets (AB), number of received attack packets (AR),

number of blocked legitimate packets (LB), and number of

received legitimate packets (LR) for the three topologies and

three approaches.

B. Simulation Results

We compare the performances of the greedy solutions for

different randomly generated topologies. The Fig. 5(a) shows

the cost of first greedy (Greedy 1), second greedy (Greedy

2), and optimal cos. For [10, 15] node trees and [3, 5] filters

the Greedy 2’s average cost is about 9% higher than average

optimal cost. For [25, 35] node trees and [5, 10] filters the

Greedy 2’s average cost is about 24% higher than optimal.

Though the complexity of Greedy 2 is little higher than Greedy

1 it performs much better.

Figs. 5(b) , 5(c), and 5(d) show the C, AB, AR, LB, and LR

for the Topology I. Here the contamination is the number of

attack-packet forwarding events per attack packet. We can see

that, at the beginning, the C in every approach is higher. The

C reduces over time and becomes gradually more stable. This

is because, at the beginning the victim knows a small subset

of the complete topology. Over time, the victim gets more and

more information from the marked packet and reconstructs the

traffic topology. Finally, the victim succeeds in constructing

the complete topology. That is why the AR is high at the

beginning and decreases over time and finally converges to

zero. The AB shows the opposite behavior for the same reason.

We can also observe that the cost (contamination) of second

greedy solution is less than the naive approach. The cost of

DP is a weighted sum of C and BL.

Next we use the Topology II to compare the performances

of three approaches for different budgets after convergence

(considering the victim knows complete topology). In this

topology we increased the internal user probability to see the

amplified effect of different budget settings. Each run was

observed for longer time (200-400 slots and each slot is about

1 second long) and the average measurements of slots are

plotted. Fig. 5(e) shows the cost of the three approaches. Here,

the cost is the number of forwarding events per attack traffic.

We can see that the cost of Greedy 2 is then lowest. The costs

of DP and Naive are similar.

Fig. 5(f) shows the effect of ω in the DP. We observe the C,

RL, and BL by ω. The C is multiplied by 10, 000 to show the

effect clearly with the other measurements. If we set ω = 0,

the total RL and C are highest (because we give no weight to

contamination). On the other hand, the LB is lowest at ω = 0.

When ω ≥ 0.4 all the legitimate packets are blocked and the

contamination remains stable. With the increase of ω, the LB

increases and the LR and C decrease, which means that the

more (or less) weight we put to contamination the more (or

less) the legitimate traffic we block. Therefore, there is a trade-

off between the number of legitimate traffic and attack traffic.

The victim should set a proper ω to have a good balance

between blocked legitimate packets and contamination.

Fig. 5(g) shows a comparison of C, AB, LR, and LB using a

real topology. Here, we define C as the number of forwarding

events of attack packets. We use the Topology III for this

simulation. The simulation shows that the C of Greedy 2 is

lower than Naive approach. In Greedy 2 and Naive approaches

attack packets are forwarded 40, 330 and 44, 844 on average.

The AB, LB, and LR are similar for both approaches. The DP

shows the lowest contamination (38, 126) but highest blocked

legitimate traffic (for ω = 0.5). The number of blocked LUs

can be adjusted by choosing a lower ω.

543

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

The DDoS attack is the most powerful attack to make a

service unavailable to users. It is not possible to protect any

server from DDoS attack without the help of the network

equipment. As the most important component in a network,

routers can be upgraded to filter routers easily. Besides, the

filter router can work in a network with legacy routers. In the

four-phase DDoS protection system, the filter routers block

the attack traffic according to the victim’s instruction. Though

the blocking control of an internet service provider (ISP) is

at victims hand who may not belong to the ISP but it will

help the ISP to minimize traffic congestion. Therefore, both

parties are benefited. In this work, we present three filter

scheduling policies for two different settings. We compare

the performances of proposed scheduling policies with the

naive approach. Simulation results show that our proposed ap-

proaches work better than the naive approach. Both the source-

based and destination-based filters have some advantages and

limitations. In future, we may formulate another problem for

finding an optimal assignment using the filter type most fitted

to a filter router.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS

1757533, CNS1629746, CNS 1564128, CNS 1449860, CNS

1461932, CNS1460971, and IIP 1439672.

REFERENCES

[1] United States Code: Title 18,1030, “Fraud and related activity in connec-
tion with computers — government printing office,” http://www.gpo.gov,
2014.

[2] “Cloudflare,” https://blog.cloudflare.com/.
[3] Attack Types. Wiley-Blackwell, 2017, ch. 5, pp. 113–141.
[4] J. Wang and I. C. Paschalidis, “Statistical traffic anomaly detection in

time-varying communication networks,” IEEE Transactions on Control
of Network Systems, vol. 2, no. 2, pp. 100–111, June 2015.

[5] V. Matta, M. D. Mauro, and M. Longo, “Ddos attacks with randomized
traffic innovation: Botnet identification challenges and strategies,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 8, pp.
1844–1859, Aug 2017.

[6] H. Luo, Z. Chen, J. Li, and A. V. Vasilakos, “Preventing distributed
denial-of-service flooding attacks with dynamic path identifiers,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 8, pp.
1801–1815, Aug 2017.

[7] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, “Realtime ddos
defense using cots sdn switches via adaptive correlation analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 7, pp.
1838–1853, July 2018.

[8] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan, “Scale
inside-out: Rapid mitigation of cloud ddos attacks,” IEEE Transactions
on Dependable and Secure Computing, pp. 1–1, 2017.

[9] C. Wang, T. T. N. Miu, X. Luo, and J. Wang, “Skyshield: A sketch-
based defense system against application layer ddos attacks,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 3, pp.
559–573, March 2018.

[10] B. Rashidi, C. Fung, and E. Bertino, “A collaborative ddos defence
framework using network function virtualization,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 10, pp. 2483–2497,
Oct 2017.

[11] D. Seo, H. Lee, and A. Perrig, “Pfs: Probabilistic filter scheduling against
distributed denial-of-service attacks,” in 2011 IEEE 36th Conference on
Local Computer Networks, Oct 2011, pp. 9–17.

[12] D. Seo, H. Lee, and A. Perrig, “Apfs: Adaptive probabilistic filter
scheduling against distributed denial-of-service attacks,” Comput. Secur.,
vol. 39, pp. 366–385, Nov. 2013.

Algorithm 4 O((N −B)2 logN) Greedy Blocking Strategy

1: Procedure: BLOCK-GREEDY-2(B, T)
2: Steps 1− 6 in Alg. 1
3: S ← {x : x.i, x.j ∈ g, i �= j, AND x.key = P(x.i, x.j)}
4: Create minheap H from S.
5: while Bc �= B do
6: m← EXTRACTMIN(H)
7: Remove x form H , where x.i or x.j is m.i or m.j
8: g ← g − {i, j}
9: Insert all {x : x.i = LCA[m.i,m.j], x.j ∈ g x.key =

P(x.i, x.j)}
10: g ← g ∩ {LCA[m.i,m.j]}
11: Increase BAT of A by BAT of imin and jmin.
12: Bc ← Bc − 1

return g

[13] “Note dame web graph,” https://snap.stanford.edu/data/web-NotreDame.
html.

APPENDIX

A. O((N −B)2 logN) approach for Second Greedy Solution

In the Alg. 4, Steps 1-6 are the same as in Alg. 1. Instead

of searching for minimum penalty pair, we create a min-heap

H from all pairs of elements in the current assignment g.

Then, we do EXTRACTMIN(H) from the heap and remove all

associated elements with the removed nodes. Then, we insert

all the associated elements with the new node. We create a

min-heap of all the pairs of nodes in g (according to Fig. 3(a)).

The heap H contains
(
N
2

)
elements. The key of an element

(i, j) is the penalty of merging the pair of nodes P (i, j). For

example, the key of node (1, 2) is P (1, 2) = N[1].BAT ×
(dist[1, 7]− dist[5, 7])+N[2].BAT × (dist[2, 7]− dist[5, 7]) =
4×(2−1)+15×(2−1) = 19. Similarly, the key of node (1, 4)
and (2, 4) is P (1, 4) = 14 and P (2, 4) = 36. Therefore, the

heap H will have {(1, 4), (1, 2), (2, 4)} elements. The heap

construction takes O(N2) time for
(
N
2

)
elements.

The next step is a while loop which iterates until Bc is

not equal to the budget B of v. The EXTRACTMIN (H)

will return the (1, 4) because its key is lowest. Generally,

the EXTRACTMIN(H) operation on heap takes O(log n)
time. Here we have

(
N
2

)
elements which take O(logN2) =

O(2 logN) = O(logN) time. After that we remove elements

of heap which are associated with 1 or 4. Therefore, the heap

H contains no elements because all the elements are associated

with 1 or 4. The number of remove operations is O(N) and

each remove operation takes O(logN). Now we remove 1
and 4 from g. Therefore, g = {2}. Next we add each pair of

elements associated with LCA[4, 1] = 7 and g. So, element

(7, 2) will be added to H . At this step we calculate the key

of (7, 2) = (15 × 2 + 0) = 30. The BAT of node 7 will be

increased by P (1, 4) = 14. So, BAT of 7 is (0 + 14) = 14.

Then LCA[1, 4] = 7 is added to g and Bc is decreased by

1. As the Bc = 2 is now equal to B the loop stops and our

algorithm finishes by returning g = {2, 7}.

We can see that in the heap an element (a pair of nodes)

is inserted or deleted once. The total number of removals

or insertions is
(
N−B

2

)
. Each insert or delete operation takes

O(log((N −B)2)) = O log(N). Therefore, the complexity of

the algorithm is O((N −B)2 log(N)).

544

Authorized licensed use limited to: Temple University. Downloaded on January 22,2021 at 06:18:18 UTC from IEEE Xplore. Restrictions apply.

